Mill Valley Estates Transportation Impact Assessment

Prepared for:

Houchaimi Holdings Inc.

Prepared by:

December 2023

PN: 2022-142

Table of Contents

1	Introd	ductionduction	1
	1.1 Exis	ting Conditions	3
	1.1.1	Area Road Network	3
	1.1.2	Existing Intersections	4
	1.1.3	Existing Driveways	4
	1.1.4	Cycling and Pedestrian Facilities	4
	1.1.5	Existing Transit	5
	1.1.6	Existing Peak Hour Travel Demand	5
2	Future	e Background Conditions	8
	2.1 Plan	ned Conditions	8
	2.1.1	Changes to the Area Transportation Network	8
	2.1.2	Other Study Area Developments	8
	2.1.3	Background Growth	8
	2.1.4	Future Background Traffic Volumes	8
3	Dema	nd Forecasting	10
	3.1 Site	Trip Generation	10
	3.2 Veh	icle Traffic Distribution and Assignment	11
	3.3 Futu	ure Total Travel Demands	11
4	Opera	ational Analysis	13
	4.1 202	2 Existing Operational Analysis	14
	4.2 Futu	ure Background Conditions	15
	4.2.1	Future Background Traffic Control Warrants	15
	4.2.2	2027 Future Background Conditions	15
	4.2.3	2032 Future Background Conditions	16
	4.3 Futu	ure Total Conditions	17
	4.3.1	Future Total Traffic Control Warrants	17
	4.3.2	2027 Future Total Conditions	18
	4.3.3	2032 Future Total Conditions	19
5	Plan c	of Subdivision Review	20
	5.1 Des	ign for Sustainable Modes	20
	5.2 New	v Streets Network	21
	5.2.1	Access Intersection Design Elements	21
	5.3 Park	king Supply	21
6	Findin	ngs and Recommendations	21
	ist of Fig		
		Context Plan	
	•	cept Plan	
	_	s Canada Trail	
	_	2 Existing Traffic Volumes	
Fi,	gure 5: Exist	ing Pedestrian Volumes	7

Figure 6: Existing Cyclist Volumes	7
Figure 7: 2027 Future Background Traffic Volumes	9
Figure 8: 2032 Future Background Traffic Volumes	10
Figure 9: New Site-Generated Traffic Volumes	11
Figure 10: 2027 Future Total Traffic	12
Figure 11: 2032 Future Total Traffic	13
Figure 12: Recommended Sidewalk Provision	20
Table of Tables	
Table 1: Turning Movement Count Data Dates	6
Table 2: ITE Trip Generation Rate	
Table 3: Vehicle Site Trip Generation	
Table 4: Peak Hour Factors	14
Table 5: Level of Service Criteria for Signalized/Unsignalized Intersections	14
Table 6: 2022 Existing Intersections Operational Analysis	14
Table 7: 2027 Future Background Conditions Operational Analysis	16
Table 8: 2032 Future Background Conditions Operational Analysis	17
Table 9: 2027 Future Total Conditions Operational Analysis	
Table 10: 2032 Future Total Conditions Operational Analysis	19

List of Appendices

Appendix A – Aerial Images and Photos

Appendix B - Traffic Data and AADT

Appendix C – Background Development Volumes

Appendix D – 2022 Existing Synchro and Sidra Worksheets

Appendix E – Signal Warrants

Appendix F – 2027 Future Background Synchro and Sidra Worksheets

Appendix G – 2032 Future Background Synchro and Sidra Worksheets

Appendix H – 2027 Future Total Synchro and Sidra Worksheets

Appendix I – 2032 Future Total Synchro and Sidra Worksheets

Appendix J – Turn Lane Warrants

1 Introduction

This Transportation Impact Assessment has been prepared to support the draft plan subdivision for the proposed development of Mill Valley Estates in the Ward of Almonte in the Municipality of Mississippi Mills, Ontario. The subject site is bounded by Paterson Road, County Road 17, the existing Orchard View Retirement and future Mill Valley Living, and rural lands to the south and is currently zoned as Development (D) Zone. The residential subdivision is proposed to include a total of 253 detached homes and 282 townhomes.

The proposed development will connect to the intersection of Jack Dalgity Street at Paterson Street via a new local road on the east leg, to Appleton Side Road (County Road 17) via a new local road, and to Industrial Drive.

The proposed development is anticipated to have a full build-out and occupancy year of 2027. The analysis will therefore include 2022 existing conditions, 2027 and 2032 future background conditions, and 2027 and 2032 future total conditions. The requirements for this TIA have been confirmed with staff from both Lanark County and the Municipality of Mississippi Mills via a pre-consultation meeting held virtually on July 20, 2022.

Figure 1 illustrates the study area context. Figure 2 illustrates the concept plan.

Figure 1: Area Context Plan

Source: http://cgis.com/cpal/Default.aspx?CLIENT=MMILLS&MAPTYPE=Zoning Accessed: November 16, 2022

1.1 Existing Conditions

1.1.1 Area Road Network

Ottawa Street: Ottawa Street is a Municipality of Mississippi Mills arterial road with a two-lane urban cross-section west of Menzie Street/Paterson Street and a four-lane urban cross-section east of Menzie Street/Paterson Street. The posted speed limit is 50 km/h within the study area. Sidewalks are present on both sides of the road west of Industrial Drive. Bike lanes are present on both sides of the road west of Menzie Street/Paterson Street and a mixed-use path (MUP) is present on both sides of the road between Industrial Drive and 175 metres to the east where a half-signal permits a MUP crossing, from which point a MUP continues on the north side of the road to the east. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 30.0 right-of-way for arterial roadways.

Mach Road (County Road 49): March Road is a County of Lanark arterial road with a two-lane rural cross-section with gravel shoulders on both sides of the road. About 275 metres east of Appleton Side Road (Country Road 17), the posted speed limit transitions from 50 km/h to 70 km/h. A measured right-of-way taken from the Municipality of Mississippi Mills Mapping Application of 30.0 metres is noted.

Appleton Side Road (Country Road 17): Appleton Side Road (Country Road 17) is a County of Lanark collector road. It has a two-lane rural cross-section with paved shoulders north of Industrial Drive where the posted speed limit is 50 km/h and gravel shoulders to the south where the posted speed limit is 80 km/h. The measured right-of-way taken from the Municipality of Mississippi Mills Mapping Application of 26.5 metres is noted.

Paterson Street: Paterson Street is a Municipality of Mississippi Mills collector road with a two-lane urban cross-section with sidewalks on both sides of the road. The posted speed limit is 40 km/h north of Jack Dalgity Street and 50 km/h to the south. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 24.0 metre right-of-way for collector roadways.

Industrial Drive: Industrial Drive is a Municipality of Mississippi Mills collector road with a two-lane rural cross-section. Based on the Municipality of Mississippi Mills Transportation Master Plan, a speed limit of 50 km/h is assumed for urban collector roadways. An asphalt sidewalk is present on the west side of the road between Ottawa Street and Stoneridge Plaza south access. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 24.0 metre right-of-way for collector roadways.

Ramsay Concession 11A: Ramsay Concession 11A is a Municipality of Mississippi Mills local road with a two-lane rural cross-section including paved shoulders within the study area. No posted speed limit is present; however, the Municipality of Mississippi Mills Transportation Master Plan indicates a speed limit of 50 km/h can be assumed for urban local roadways. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 20.0 metre right-of-way for local roadways.

Menzie Street: Menzie Street is a Municipality of Mississippi Mills collector road with a two-lane urban cross-section with a sidewalk on the west side of the road. Based on the Municipality of Mississippi Mills Transportation Master Plan, a speed limit of 50 km/h is assumed for urban collector roadways. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 24.0 metre right-of-way for collector roadways.

Jack Dalgity Street: Jack Dalgity Street is a Municipality of Mississippi Mills local road with a two-lane urban cross-section with a sidewalk on the north side of the road. Based on the Municipality of Mississippi Mills Transportation Master Plan, a speed limit of 50 km/h is assumed for urban local roadways. The Municipality of Mississippi Mills Transportation Master Plan reserves a minimum 20.0 right-of-way of way for local roadways.

1.1.2 Existing Intersections

The existing key intersections have been summarized below, and aerial images and photos from a site visit are provided for illustrative purposes in Appendix A:

Road 49) at Appleton Side Road (County Road 17)/Ramsay Concession 11A

Ottawa Street/March Road (County The intersection of Ottawa Street/March Road (County Road 49) and Appleton Side Road (County Road 17)/Ramsay Concession 11A is a four-legged roundabout intersection.

> The northbound and southbound approaches each consists of a shared all-movement lane. The eastbound and westbound approaches each consists of a shared left-turn/through lane and a shared through/right-turn lane. Pedestrian crossovers are provided on each leg. No turn restrictions were noted.

Ottawa Street and Paterson Street /Menzie Street

The intersection of Ottawa Street and Paterson Street/Menzie Street is a signalized intersection. The northbound, southbound, and eastbound approaches each consists of a shared all-movement lane. The westbound approach consists of a left-turn lane, a through lane, and an auxiliary right-turn lane. No turning restrictions were noted at this intersection.

Ottawa Street and Industrial Drive

The intersection of Ottawa Street and Ottawa Street and Industrial Drive is a signalized intersection. The northbound approach consists of a shared left-turn/through lane and a channelized auxiliary rightturn lane, and the southbound approach consists of an auxiliary leftturn lane and a shared through/right-turn lane. The eastbound and westbound approaches each consists of an auxiliary left-turn lane, a through lane, and a shared through/right-turn lane. No turning restrictions were noted at this intersection.

Industrial Drive and Appleton Side Road (County Road 17)

The intersection of Industrial Drive and Appleton Side Road (County Road 17) is an unsignalized T-intersection, stop-controlled on the minor approach of Industrial Drive. Each approach consists of a shared all-movement lane. No turning restrictions were noted at this intersection.

Jack Dalgity Street and Paterson Street

The intersection of Jack Dalgity Street and Paterson Street is an unsignalized T-intersection, stop-controlled on the minor approach of Jack Dalgity Street. Each approach consists of a shared all-movement lane. No turning restrictions were noted at this intersection.

1.1.3 Existing Driveways

Within 400 metres of the proposed site accesses, two accesses to a retirement home with surrounding townhomes, two driveways to single detached homes are present on Paterson Street, one driveway to a single detached home is present on Appleton Side Road, and field accesses are present on both Paterson Street and Appleton Side Road. None are anticipated to generate significant traffic volumes.

1.1.4 Cycling and Pedestrian Facilities

Sidewalks are present on the north side of Jack Dalgity Street, on the west side of Industrial Drive between Ottawa Street and Stoneridge Plaza south access and of Menzie Street, and on both sides of Paterson Road. A pedestrian

crossing is provided on Appleton Side Road (County Road 17) about 245 metres south of Ottawa Street connecting to the Appleton Trail.

Bike lanes are present on both sides of Ottawa Street west of Menzie Street/Paterson Street, and a mixed-use path is present on both sides of Ottawa Street between Industrial Drive and 175 metres to the east where a half-signal permits a MUP crossing, and a MUP continues on the north side of the road to the east.

The Trans Canada Trail partly comprises the paved shoulders on Appleton Side Road (County Road 17) and the MUPs on Ottawa Street through the study area. The Lanark Link of the Trail is cited to be popular for cycling, per its description at tetrail.ca, and is stated to permit walking/hiking and road cycling. Figure 3 shows the trail located within the study area.

Figure 3: Trans Canada Trail

Source: https://tctrail.ca/explore-the-map/Accessed: November 16, 2022

1.1.5 Existing Transit

There is no existing transit service along the boundary road that would serve the proposed development.

1.1.6 Existing Peak Hour Travel Demand

Table 1 summarizes the count locations, count dates, identified peak hour hours, and data sources. Existing study area turning movement counts, with the exception of Ottawa Street at Industrial Drive/Sadler Drive were collected for this study. The Ottawa Street at Industrial Drive/Sadler Drive intersection turning volumes were acquired from Mill Valley Living Gerry Emon Road Traffic Impact Study (July 29, 2021).

Table 1: Turning Movement Count Data Dates

Location	Count Date	AM Peak Hour (PM Peak Hour)	Data Source
Ottawa St/March Rd (CR 49) at Appleton Side Rd (CR 17)/Ramsay Con 11A	Wednesday, November 02, 2022	8:45 – 9:45 (16:00 – 17:00)	
Ottawa St at Paterson St/Menzie St	Wednesday, November 02, 2022	9:00 – 10:00 (15:45 – 16:45)	The Traffic
Industrial Dr at Appleton Side Rd (CR 17)	Wednesday, November 02, 2022	8:45 – 9:45 (16:15 – 17:15)	Specialist Mill Valley Living Gerry Emon Road
Jack Dalgity St at Paterson St	Wednesday, November 02, 2022	8:30 – 9:30 (15:45 – 16:45)	
Ottawa St at Industrial Dr/Sadler Dr	2019	-	, ,

Figure 4 illustrates the 2022 existing horizon traffic volumes. Detailed turning movement count data and AADT counts can be found in Appendix B. Estimated AADTs from the existing volumes were confirmed to be commensurate with the AADT on the segments from the County Road traffic volume database.

Figure 4: 2022 Existing Traffic Volumes 17(17) 11(15) 26(19) 3(11) 51(61) 15(46) 370(741) 277(633) 271(555) 50(60) 17(27) 31(56) Ottawa 1(4) 105(84) 8(17) 509(510) 348(332) 9(8) 77(64) 371(388) 52(139) 41(35) 7(12) 20(24) 27(44) 43(97) 37(62) Industrial Industrial ጎ ↑ 14(13) 20(21) -Jack Dalgity Appleton Side

Pedestrian and cyclist volumes included in study area intersection counts are illustrated in Figure 5 and Figure 6, respectively. Only the intersections of Ottawa Street/March Road (Country Road 49) at Appleton Side Road (Country Road 17)/ Ramsay Concession 11A, Ottawa Street at Paterson Street/Menzie Street, Industrial Drive at Appleton Side Road (County Road 17), and Jack Dalgity Street at Paterson Street had pedestrian and cyclist volumes available.

2 Future Background Conditions

2.1 Planned Conditions

2.1.1 Changes to the Area Transportation Network

The Municipality of Mississippi Mills Active Transportation Plan indicates Paterson Street as a future primary cycling urban route, Ottawa Street, March Road (County Road 49), and Appleton Side Road (County Road 17) as future spine routes. While no specific timing information has been indicated for these improvements and they may be assumed to occur beyond the future analysis horizon, no changes in traffic patterns or network capacity are anticipated to be resultant from these improvements.

No other changes to the area transportation network are anticipated.

2.1.2 Other Study Area Developments

Mill Valley Living

The proposed development application includes a site plan for the construction of 12 townhouse blocks for a total of 45 units, and an apartment building which would provide 48 apartment units. The development is anticipated to be built out in 2023 and is predicted to generate 7 new AM two-way peak-hour auto trips and 10 new PM two-way peak-hour auto trips. (D. J. Halpenny & Associates Ltd, 2021)

2.1.3 Background Growth

To generate 2027 and 2032 future background traffic volumes, a 1.5% compound annual growth rate was assumed to be applied to the existing 2022 traffic counts. This growth rate has been applied to Appleton Side Road, Ottawa Street, March Road, and Paterson Street's mainline volumes and to the major turning movements at intersections.

2.1.4 Future Background Traffic Volumes

Applying the background development discussed in Section 2.1.2 and background growth rate discussed in Section 2.1.3 above to the 2022 existing traffic volumes, the future background traffic volumes were projected. The background development volumes within the study area have been provided in Appendix C.

Figure 7 and Figure 8 illustrate the 2027 and 2032 future background traffic volumes, respectively. All intersection lane configurations have been carried forward from the 2022 existing conditions as there are no anticipated changes for the 2027 and 2032 future horizons.

Figure 7: 2027 Future Background Traffic Volumes

Figure 8: 2032 Future Background Traffic Volumes

Demand Forecasting

Site Trip Generation

The proposed development will include 253 single family detached units and 282 low-rise multifamily housing units. The ITE Trip Generation Manual 11th Edition has been reviewed to determine the appropriate trip generation rate equations for the proposed land uses and are summarized in Table 2.

Table 2: ITE Trip Generation Rate

Land Use	Data Source	Trip I	Rates
Land Ose	Data Source	AM Peak	PM Peak
Single Family Detached	LUC 210	T = 0.91(X) + 0.12	T = 0.94(X) + 0.27
Multifamily Housing (Low-Rise)	LUC 220	T = 0.31 (X) +22.85	T = 0.43(X) + 20.55
Notes: T = Average Vehicle Trip Ends, X =	Number of Dwelling Units		

Using the above vehicle trip rate equations, the total vehicle trip generation during the weekday AM peak hour and weekday PM peak hour are summarized in Table 3. Given that the proposed development consists of only residential uses and this analysis is for full occupancy of the subject development, all trips are considered primary, and no synergy effects or pass-by trips have been considered.

Table 3: Vehicle Site Trip Generation

Land Use	Units	AM	Peak (veh/l	nr)	PN	PM Peak (veh/hr)			
	Units	ln	Out	Total	In	Out	Total		
Single Family Detached	253	45	130	175	150	88	238		
Multifamily Housing (Low-Rise)	282	26	84	110	89	53	142		
	Total	71	214	285	239	141	380		

As shown above, a total of 285 AM and 380 PM new peak hour two-way vehicle trips are projected as a result of proposed development.

3.2 Vehicle Traffic Distribution and Assignment

Traffic distribution was based on the existing volume splits at study area intersections and a knowledge of the area travel. Based on these factors, new site-generated trips were assigned to study area intersections, which is illustrated in Figure 9. Section 5.2 provides further information regarding proposed access configurations.

Figure 9: New Site-Generated Traffic Volumes 999 0(0) 0(0) 0(0) 4(12) 25(84) Ottawa 0(0) 0(0) 0(0) 11(7) 14(48) 4(12) 75(49) 0(0) 0(0) Industrial 0(0) 86(56)

3.3 Future Total Travel Demands

The 2027 and 2032 site-generated traffic has been combined with the 2027 and 2032 future background traffic volumes to estimate the 2027 and 2032 future total traffic volumes. Figure 10 and Figure 11 illustrate the 2027 and 2032 future total traffic volumes, respectively. Access configuration details are presented in Section 5.2.

Figure 10: 2027 Future Total Traffic

Figure 11: 2032 Future Total Traffic

Operational Analysis

To understand the operational characteristics of the study area intersections, a Synchro model has been created using Synchro Version 11 and Sidra Version 9 has been used to model the study area roundabouts.

Since the signal timing plan of the intersections along of Ottawa Street are not available at this time, a cycles length of 90 seconds has been assumed for both AM and PM peak hours at all horizons and optimized splits have been applied.

Heavy Vehicle percentages (HV%) have been calculated for each movement based on the existing turning movement counts for the study area intersections and have been applied to both the existing and future analysis horizons. A minimum HV% of 2% was used in Synchro to ensure a conservative analysis.

With the exception of the Ottawa Street and Industrial Drive/ Sadler Drive intersection, cyclist and pedestrian volumes were provided for all intersections with turning movement count information collected in 2022 and have been applied to the existing and future conditions analysis.

Peak Hour Factors (PHF) have been entered for each intersection based on the turning movement counts provided. The Peak Hour Factors used for each intersection are shown below in Table 4. The peak hour factor for the site access on Appleton Side Road will be taken from the adjacent intersection at Industrial Drive. All other parameters have been coded using accepted best practices and default parameters, where applicable.

Table 4: Peak Hour Factors

Intercetion	Peak Hour Factor			
Intersection	AM	PM		
Ottawa St/March Rd (CR 49) at Appleton Side Rd (CR 17)/Ramsay Con 11A	0.91	0.97		
Ottawa St at Paterson St/Menzie St	0.93	0.95		
Ottawa St and Industrial Dr/ Sadler Dr	0.92	0.92		
Industrial Dr at Appleton Side Rd (CR 17)	0.86	0.96		
Jack Dalgity St at Paterson St	0.71	0.94		

LOS has been determined using the HCM definitions for LOS at signalized and unsignalized intersections which are summarized in Table 5 below.

Table 5: Level of Service Criteria for Signalized/Unsignalized Intersections

LOS	Signalized Intersection Delay (s)	Unsignalized Intersection Delay (s)
Α	≤10	≤10
В	>10 and ≤20	>10 and ≤15
С	>20 and ≤35	>15 and ≤25
D	>35 and ≤55	>25 and ≤35
E	>55 and ≤80	>35 and ≤50
F	>80	>50

Critical movements and critical intersections have been defined as individual movements with LOS F or a V/C ratio of 1.00 or greater, and intersections with an overall LOS F. Critical movements and critical intersections will be indicated in red within operational result tables below and may require mitigation measures.

4.1 2022 Existing Operational Analysis

Table 6 summarizes the operational analysis for the 2022 existing conditions during both the AM and PM peak hours. If present, critical movements, as defined above, have been identified in red. Synchro and Sidra worksheets for the 2022 existing traffic conditions are included in Appendix D.

Table 6: 2022 Existing Intersections Operational Analysis

Intersection	Lana		AM Pea	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.14	2.4	5.3	Α	0.14	2.6	5.3
Rd (CR 49) and	WB	Α	0.11	2.8	4.4	Α	0.22	2.9	9.6
Appleton Side Rd	NB	Α	0.10	6.1	2.7	Α	0.12	6.6	3.2
(CR 17)/Ramsay Con 11A	SB	Α	0.06	5.9	1.5	Α	0.06	6.2	1.6
Roundabout	Overall	Α	0.14	3.2	5.3	Α	0.22	3.3	9.6
	EB	Α	0.55	9.0	98.1	С	0.72	24.5	122.4
Ottown Ct and	WBL	Α	0.11	5.3	9.3	В	0.17	10.4	9.4
Ottawa St and Paterson	WBT	Α	0.36	6.7	53.8	В	0.76	19.3	144.2
St/Menzie St	WBR	Α	0.00	4.5	0.0	Α	0.01	7.7	0.5
Signalized	NB	С	0.58	34.5	35.8	С	0.38	27.5	35.8
Signanzea	SB	С	0.06	28.2	7.6	С	0.03	24.4	5.8
	Overall	В	0.56	12.0	-	С	0.70	21.6	-

Ottawa St and Industrial Dr/ Sadler Dr	1		AM Pe	ak Hour			PM Pe	ak Hour	
	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	Α	0.17	3.7	9.8	Α	0.23	7.4	13.1
	EBT/R	Α	0.21	6.0	26.2	В	0.30	10.9	41.8
O44 C4	WBL	Α	0.03	6.2	2.5	Α	0.07	9.8	5.5
	WBT/R	Α	0.18	7.6	20.5	В	0.48	15.1	69.6
•	NBL/T	D	0.57	36.1	22.9	D	0.73	37.1	48.0
	NBR	С	0.01	28.8	0.0	С	0.02	23.5	0.0
Signalized	SBL	С	0.42	32.3	17.5	С	0.22	25.1	14.5
	SBT/R	С	0.17	29.8	14.8	С	0.14	24.3	15.0
	Overall	В	0.28	12.4	-	В	0.53	16.8	-
Industrial Dr and	EB	Α	0.05	9.4	0.8	Α	0.04	9.6	0.8
Appleton Side Rd	NB	Α	0.02	7.5	0.8	Α	0.03	7.6	0.8
(CR 17)	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	2.7	-	Α	-	2.2	-
look Dolgity St. and	EB	Α	0.07	9.2	1.5	Α	0.07	9.2	13.1 41.8 5.5 69.6 48.0 0.0 14.5 15.0 - 0.8 0.8
Jack Dalgity St and	NB	Α	0.01	7.6	0.0	Α	0.01	7.4	0.0
Paterson St	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	5.2	-	Α	-	4.3	-

Notes: Saturation flow rate of 1800 veh/h/lane Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

Generally, the study area intersections are shown to operate with good overall LOS and low delays and no additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted.

4.2 Future Background Conditions

4.2.1 Future Background Traffic Control Warrants

Using Ontario Traffic Manual (OTM) Book 12 Justification 7 methodology for examining traffic control signal warrants, the unsignalized study area intersections have been analyzed. In the future background horizons signalization is not warranted at any currently unsignalized study area intersections. Traffic control warrant sheets have been included in Appendix E.

4.2.2 2027 Future Background Conditions

The 2027 future background intersection volumes have been analyzed to allow for a comparison of the future volumes with and without the proposed development.

Table 7 summarizes the operational analysis for the 2027 future background conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.2.1. Synchro and Sidra worksheets for the 2027 future background traffic conditions are included in Appendix F.

Table 7: 2027 Future Background Conditions Operational Analysis

1			AM Pe	ak Hour		,	PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.15	2.5	5.8	Α	0.15	2.7	5.8
Rd (CR 49) and	WB	Α	0.12	2.8	4.8	Α	0.24	3.0	10.7
Appleton Side Rd	NB	Α	0.11	6.2	3.0	Α	0.13	6.7	3.6
(CR 17)/Ramsa/y	SB	Α	0.06	6.0	1.5	Α	0.06	6.3	1.7
Con 11A Roundabout	Overall	Α	0.15	3.2	5.8	Α	0.24	3.3	10.7
	EB	В	0.60	10.0	111.6	С	0.78	27.4	#152.5
	WBL	Α	0.13	5.6	10.0	В	0.20	10.8	10.1
Ottawa St and	WBT	Α	0.39	7.2	59.4	С	0.82	22.4	#177.3
Paterson	WBR	Α	0.00	4.6	0.0	Α	0.01	7.7	0.5
St/Menzie St	NB	D	0.61	35.8	38.4	С	0.41	27.9	38.7
Signalized	SB	С	0.06	28.0	7.6	С	0.03	24.4	5.8
	Overall	В	0.60	12.8	-	С	0.75	24.3	-
	EBL	Α	0.18	3.7	9.9	Α	0.25	7.8	13.3
	EBT/R	Α	0.23	6.1	28.5	В	0.32	11.3	45.5
a a. I	WBL	Α	0.04	6.3	2.8	Α	0.08	9.9	6.3
Ottawa St and	WBT/R	Α	0.20	7.7	22.1	В	0.52	15.6	76.5
Industrial Dr/ Sadler Dr	NBL/T	D	0.59	37.0	23.8	D	0.74	37.6	49.4
	NBR	С	0.02	28.8	0.0	С	0.02	23.3	0.0
Signalized	SBL	С	0.42	32.3	17.3	С	0.22	24.9	14.5
	SBT/R	С	0.19	29.9	15.4	С	0.16	24.3	16.5
	Overall	В	0.29	12.4	-	В	0.56	17.2	-
Industrial Dr and	EB	Α	0.05	9.4	0.8	Α	0.05	9.8	1.5
Appleton Side Rd	NB	Α	0.02	7.5	0.8	Α	0.03	7.6	0.8
(CR 17)	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	2.6	-	Α	-	2.2	-
Jack Dalgity St and	EB	Α	0.08	9.4	1.5	Α	0.07	9.3	1.5
Paterson St	NB	Α	0.01	7.6	0.0	Α	0.01	7.4	0.0
Unsignalized	SB	-	-	-	-	-	-	-	-
Giisigiidiized	Overall	Α	-	4.4	-	Α	-	3.7	-

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds

= volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2027 future background horizon in the study area generally operate similarly to the existing conditions. No additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted.

The intersection of Ottawa Street at Paterson Street/Menzie Street may exhibit extended queues on the eastbound and westbound through movement during the PM peak hour due to background growth.

4.2.3 2032 Future Background Conditions

The 2032 future background intersection volumes have been analyzed to allow for a comparison of the future volumes with and without the proposed development.

Table 8 summarizes the operational analysis for the 2032 future background conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.2.1. Synchro and Sidra worksheets for the 2032 future background traffic conditions are included in Appendix G.

Table 8: 2032 Future Background Conditions Operational Analysis

1	•		AM Pe	ak Hour		,	PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.16	2.5	6.3	Α	0.16	2.7	6.3
Rd (CR 49) and	WB	Α	0.13	2.9	5.3	Α	0.26	3.0	11.8
Appleton Side Rd	NB	Α	0.12	6.3	3.4	Α	0.14	6.8	3.9
(CR 17)/Ramsay	SB	Α	0.06	6.1	1.6	Α	0.06	6.4	1.7
Con 11A	Overall	Α	0.16	3.2	6.3	Α	0.26	3.4	11.8
Roundabout									
	EB	В	0.65	11.4	128.5	С	0.85	31.4	#172.3
Ottawa St and	WBL	Α	0.15	6.0	10.8	В	0.23	11.2	10.7
Paterson	WBT	Α	0.42	7.8	65.2	С	0.89	27.5	#215.8
St/Menzie St	WBR	Α	0.00	4.8	0.0	Α	0.01	7.7	0.5
Signalized	NB	D	0.65	37.1	42.0	С	0.45	28.3	41.9
Signanzea	SB	С	0.06	27.6	7.6	С	0.03	24.4	5.8
	Overall	В	0.65	13.8	-	С	0.81	28.2	-
	EBL	Α	0.18	3.7	9.9	Α	0.26	8.0 13.3	13.3
	EBT/R	Α	0.25	6.2	30.7	В	0.35	11.5	49.1
O	WBL	Α	0.04	6.3	2.8	Α	0.08	9.9	6.3
Ottawa St and	WBT/R	Α	0.21	7.8	23.7	В	0.56	16.2	83.7
Industrial Dr/ Sadler Dr	NBL/T	D	0.59	37.0	23.8	D	0.74	37.6	49.4
Signalized	NBR	С	0.02	28.8	0.0	С	0.02	23.3	0.0
Signalizea	SBL	С	0.42	32.3	17.3	С	0.22	24.9	14.5
	SBT/R	С	0.19	29.9	15.4	С	0.16	24.3	16.5
	Overall	В	0.31	12.2	-	В	0.58	17.4	-
Industrial Dr and	EB	Α	0.05	9.5	0.8	Α	0.05	9.8	0.8
Appleton Side Rd	NB	Α	0.02	7.5	0.8	Α	0.03	7.6	0.8
(CR 17)	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	2.4	-	Α	-	1.9	-
lask Dalaitu Ct and	EB	Α	0.08	9.5	2.3	Α	0.07	9.4	1.5
Jack Dalgity St and	NB	Α	0.01	7.7	0.0	Α	0.01	7.4	0.0
Paterson St Unsignalized	SB	-	-	-			-	-	-
Unsignalizea	Overall	Α	-	3.8	-	Α	-	3.3	-
Caturation flor	w rate of 1800 v	oh/h/lano			Delay = averag	o vobielo dol	w in coconds		

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2032 future background horizon in the study area generally operate similarly to the existing and 2027 future background conditions. No additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted.

4.3 Future Total Conditions

4.3.1 Future Total Traffic Control Warrants

Using Ontario Traffic Manual (OTM) Book 12 Justification 7 methodology for examining traffic control signal warrants the unsignalized study area intersections, as well as the intersection of Site Access #2 and Appleton Side Road (County Road 17) and have been analyzed. In the future total horizon, signalization is not warranted at any of the currently unsignalized or future study area intersections. Traffic control warrant sheets have been included in Appendix E.

4.3.2 2027 Future Total Conditions

The proposed development's trip generation has been added to the 2027 future background traffic volumes to project the impact of the new traffic on the future road network.

Table 9 summarizes the operational analysis for the 2027 future total conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.3.1. Synchro and Sidra worksheets for the 2027 future total traffic conditions are included in Appendix H.

Table 9: 2027 Future Total Conditions Operational Analysis

1				ak Hour	ns Operationa		PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.16	2.6	6.1	Α	0.17	3.0	6.8
Rd (CR 49) and	WB	Α	0.13	3.2	5.4	Α	0.27	3.5	12.7
Appleton Side Rd	NB	Α	0.21	5.6	6.2	Α	0.19	6.1	5.7
(CR 17)/Ramsay	SB	Α	0.06	6.2	1.6	Α	0.07	6.6	1.8
Con 11A	Overall	A	0.21	3.5	6.2	A	0.27	3.8	12.7
Roundabout									
	EB	В	0.67	13.5	126.0	D	0.93	41.4	#198.7
Ottawa St and	WBL	Α	0.14	7.1	10.4	В	0.22	11.6	10.1
Paterson	WBT	Α	0.46	9.6	69.8	С	0.85	24.5	#202.0
St/Menzie St	WBR	Α	0.00	5.8	0.0	Α	0.01	7.7	0.5
Signalized	NB	D	0.78	43.9	57.6	С	0.54	30.0	50.3
Signanzea	SB	С	0.05	25.7	7.6	С	0.03	24.4	5.8
	Overall	В	0.70	17.1	-	С	0.84	31.1	-
	EBL	Α	0.18	4.6	11.9	Α	0.26	9.1	9.1 14.1
	EBT/R	Α	0.25	7.4	33.0	В	0.38	13.5	52.6
Ott (t)	WBL	Α	0.05	6.4	3.8	В	0.11	10.0	8.4
Ottawa St and	WBT/R	Α	0.21	8.5	25.4	В	0.55	16.9	81.0
Industrial Dr/ Sadler Dr	NBL/T	D	0.72	44.7	31.4	D	0.76	37.9	55.4
	NBR	С	0.03	27.9	0.0	С	0.03	22.2	0.0
Signalized	SBL	С	0.37	30.6	17.1	С	0.22	23.8	14.5
	SBT/R	С	0.17	28.8	15.0	С	0.15	23.1	16.2
	Overall	В	0.34	14.3	-	В	0.58	18.4	-
Industrial Dr and	EB	В	0.06	10.1	1.5	В	0.06	10.7	1.5
Appleton Side Rd	NB	Α	0.02	7.5	0.8	Α	0.03	7.8	0.8
(CR 17)	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	1.8	-	Α	-	1.5	-
	EB	В	0.09	10.1	2.3	В	0.09	10.9	2.3
Jack Dalgity St/	WB	Α	0.07	8.9	1.5	Α	0.05	8.9	0.8
Access #1 and	NB	Α	0.01	7.6	0.0	Α	0.01	7.4	0.0
Paterson St	SB	Α	0.01	7.3	0.0	Α	0.04	7.4	0.8
Unsignalized	Overall	Α	-	5.9	-	Α	-	5.5	-
Access #2 and	EB	В	0.14	10.3	3.8	В	0.12	11.3	3.0
Appleton Side Rd	NB	Α	0.01	7.5	0.0	Α	0.02	7.8	0.8
• •	SB	_	_	_	-	_			_
(CR 17)	SB	-	_	-	- 1	-	_	-	_

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2027 future total horizon in the study area generally operate similarly to the 2027 future background conditions and the site access intersections operate well. Since no additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted, no mitigation is required.

4.3.3 2032 Future Total Conditions

The proposed development's trip generation has been added to the 2032 future background traffic volumes to project the impact of the new traffic on the future road network.

Table 10 summarizes the operational analysis for the 2032 future total conditions in both the AM and PM peak hours. Critical movements, as defined above, have been identified in red where applicable. The intersections have been analyzed based on the identified signal control and intersection configurations in Section 4.3.1. Synchro and Sidra worksheets for the 2032 future total traffic conditions are included in Appendix I.

Table 10: 2032 Future Total Conditions Operational Analysis

Interception	Lama		AM Pe	ak Hour		•	PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Ottawa St/March	EB	Α	0.17	2.6	6.7	Α	0.18	3.0	7.4
Rd (CR 49) and	WB	Α	0.14	3.2	5.9	Α	0.29	3.5	13.9
Appleton Side Rd	NB	Α	0.22	5.7	6.6	Α	0.20	6.2	6.1
(CR 17)/Ramsay	SB	Α	0.06	6.2	1.6	Α	0.07	6.7	1.8
Con 11A Roundabout	Overall	Α	0.22	3.5	6.7	Α	0.29	3.8	13.9
Noundabout	EB	В	0.73	15.6	145.0	D	0.99	54.1	#218.1
	WBL	A	0.73	7.7	11.3	В	0.26	12.1	10.7
Ottawa St and	WBT	В	0.49	10.4	76.7	C	0.92	30.9	#227.1
Paterson	WBR	A	0.00	6.1	0.0	A	0.01	7.7	0.5
St/Menzie St	NB	D	0.80	45.2	61.5	C	0.57	30.8	53.3
Signalized	SB	С	0.05	25.3	7.6	C	0.03	24.4	5.8
	Overall	В	0.75	18.6	-	D	0.89	39.0	-
	EBL	Α	0.18	4.4	11.3	Α	0.28	9.3	14.1
	EBT/R	Α	0.27	7.4	34.2	В	0.40	13.8	56.7
	WBL	Α	0.05	6.3	3.5	В	0.12	10.0	8.4
Ottawa St and	WBT/R	Α	0.22	8.4	26.4	В	0.58	17.5	88.4
Industrial Dr/	NBL/T	D	0.75	48.4	31.5	D	0.76	37.9	55.4
Sadler Dr	NBR	С	0.02	28.0	0.0	С	0.03	22.2	0.0
Signalized	SBL	С	0.39	31.0	17.2	С	0.22	23.8	14.5
	SBT/R	С	0.17	28.9	15.1	С	0.15	23.1	16.2
	Overall	В	0.36	14.4	-	В	0.61	18.6	-
Industrial Dr and	EB	В	0.06	10.2	1.5	В	0.06	10.9	1.5
Appleton Side Rd	NB	Α	0.02	7.6	0.8	Α	0.03	7.9	0.8
(CR 17)	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	1.7	-	Α	-	1.5	-
Jack Dalgity St/	EB	В	0.09	10.4	2.3	В	0.09	11.2	2.3
Access #1 and	WB	Α	0.07	9.0	1.5	Α	0.05	9.0	0.8
Paterson St	NB	Α	0.01	7.7	0.0	Α	0.01	7.4	0.0
Unsignalized	SB	Α	0.01	7.3	0.0	Α	0.04	7.4	0.8
g	Overall	Α	-	5.4	-	Α	-	5.2	-

luda va a ati a u	Lama		AM Pea	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Access #2 and	EB	В	0.15	10.4	3.8	В	0.12	11.5	3.0
Appleton Side Rd	NB	Α	0.01	7.5	0.0	Α	0.02	7.8	0.8
(CR 17)	SB	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	3.5	-	Α	-	2.2	-

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Delay = average vehicle delay in seconds # = volume for the 95th %ile cycle exceeds capacity

The intersection operations for the 2032 future total horizon in the study area generally operate similarly to the 2032 future background conditions and the site access intersections operate well. Since no additional operational constraints (V/C ratio greater than 0.90 or LOS E or worse) are noted, no mitigation is required.

5 Plan of Subdivision Review

This section provides an overview of community access, street network, parking, and active mode facilities. The proposed Subdivision Concept Plan was previously illustrated in Figure 2.

5.1 Design for Sustainable Modes

The proposed residential subdivision consists of detached and townhouse dwelling will include a driveway and garage. Bicycle parking is assumed to be within the individual units.

Pedestrian facilities are recommended to be provided within the proposed development between the site accesses, along potential routes of high pedestrian travel demand, and fronting the major recreational draws of the parkland and stormwater management facility. The preliminary recommended sidewalk layout is illustrated in Figure 12.

Figure 12: Recommended Sidewalk Provision

5.2 New Streets Network

The new streets proposed include 20.0-metre local roads, consistent with the Municipality of Mississippi Mills Transportation Master Plan. The local roads are proposed to be posted as 50 km/h at the gateways to the communities, and the internal roads are proposed as having unposted speed limits of 50 km/h.

No turn lanes are proposed for the internal intersections and will be controlled by minor stop control.

5.2.1 Access Intersection Design Elements

The proposed development will connect to the intersection of Jack Dalgity Street at Paterson Street via a new local road east leg and to Appleton Side Road (County Road 17) via a new local road intersection.

Turn lane warrants from the Transportation Association of Canada's Geometric Design Guides for Canadian Roads Section 9.17 were examined for Paterson Street and Appleton Side Road to the new community local roads. Neither access intersection was found to warrant a new left-turn lane on the existing road. The results of the turn lane warrants are provided in Appendix J.

The operations are summarized in Section 4.3 for future conditions. No capacity issues were noted at the intersections of Jack Dalgity Street/Access #1 at Paterson Street and Access #2 at Appleton Side Road (County Road 17) with these assumptions.

The signal warrant analysis has been conducted for the 2032 future total horizon using the OTM Book 12 Justification 7 criteria. Using these criteria, a signal was not found to be warranted at the site access intersections. Appendix E includes the signal warrants for the access.

5.3 Parking Supply

The inclusion of a garage and driveway of each detached and townhouse unit satisfies the parking for the freehold dwellings.

6 Findings and Recommendations

- a) The Mill Valley Estates development is proposed to include 253 detached homes and 282 townhomes.
- b) The proposed development will connect to the intersection of Jack Dalgity Street at Paterson Street via a new local road on the east leg, to Appleton Side Road (County Road 17) via a new local road, and to Industrial Drive.
- c) The full build-out horizon year of 2027 and the full build-out plus five years horizon year of 2032 have been analyzed.
- d) No significant planned changes to the area transportation network, and Mill Valley Living has been included in the background conditions.
- e) The proposed development is projected to a total of 285 AM and 380 PM new peak hour two-way vehicle trips during weekdays.
- f) A 1.5% compound annual growth rate was selected to generate the 2027 and 2032 future background traffic volumes.
- g) No capacity constraints or high delays were noted in the 2022 existing condition, therefore no mitigation was required.
- h) The 2027 and 2032 future background traffic volumes, including the background growth were analyzed and operate in a similar manner as existing conditions.
- i) With the addition of site traffic volumes to the study area intersections, a slight increase to the intersection capacities and delays are expected and remain similar to the background conditions.

- i) Signal warrants are not met at the site access intersections on Paterson Street or Appleton Side Road.
- k) Neither intersection was found to warrant a new left-turn lane on either Paterson Street of Appleton Side Road.
- I) The site access intersections operate well in both the 2027 and 2032 horizons with stop control on the minor approach.
- m) Within the subdivision, no turn lanes are proposed for the internal intersections and will be controlled by minor stop control.
- n) Pedestrian facilities are recommended to be provided within the proposed development between the site accesses, along potential routes of high pedestrian travel demand, and fronting the major recreational draws of the parkland and stormwater management facility.
- o) The inclusion of a garage and driveway of each detached and townhouse unit satisfies the parking for the freehold dwellings.

The Mill Valley Estates development will have a minor impact on the study area road network. The proposed access will operate with reasonable LOS and delay on the turning movements into and out of the site. Additionally, through the provision of on-site facilities, this development will be supportive of active mode transportation. It is recommended that, from a transportation perspective, the proposed development application proceed.

Prepared By:

Reviewed By:

JulhiChan

Yu-Chu Chen, EIT
Transportation Engineering-Intern

A. J. HARTE HIS 100149314

December 8, 2023

PROVINCE OF ONTREIO

Andrew Harte, P.Eng.
Senior Transportation Engineer

Appendix A

Aerial Images and Photos

Appendix B

Traffic Data and AADT

1700-1800

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

1033

Summary: All Vehicles

Almonte, ON Appleton Side Road/Ramsay Concession 11A & March Road/Ottawa Street Survey Date: Tuesday, November 01, 2022 Start Time: 0700 AADT Factor: 1.0 Weather AM: Overcast 10° C Survey Duration: 8 Hrs. Survey Hours: 0700-1000, 1130-1330 & 1500-1800 Weather PM: Mostly Sunny 16° C T. Carmody Surveyor(s): Ottawa St. March Rd. Appleton Side Rd. Ramsay Conc. 11A Eastbound Westbound Southbound ST RT UT ST RT 397 0900-1000 9 333 381 271 307 82 1130-1230 8 270 44 322 242 276 1230-1330 14 233 1500-1600 1600-1700 1233 62 555 46 657 1068 165

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

139

525 850

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr			ehicle v 4073			ted by r 8386		8-hour t 421	by the 8 1190			tor of 1 0	.39 587	1776	10162
AADT 12-hr	108	age daily 474	our vel 4073			alculate 8386		ng the e 421	lent 12-l 1190			DT fact	or of: 1 587	.0 1776	10162
AADT 24 Hr		ADT. The	lumes 5335	culated 4860		/erage d 10985		ehicle vo	s by the 1559		nsion f	actor o	f 1.31 768	2327	13313

AADT and	l expansion	factors	provided	by the	City o	f Ottawa
----------	-------------	---------	----------	--------	--------	----------

AM Peak Ho	ur Fa	ctor •	>	0.	91									Hiç	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen ()700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
0845-0945	5	348	37	3	393	30	271	15	1	317	710	44	7	41	0	92	26	11	17	0	54	146	856
OFF Peak H	our F	actor	→	0.	98									Hiç	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	1130h &	: 1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1200-1300	11	262	44	2	319	22	273	10	0	305	624	61	16	28	0	105	19	16	17	0	52	157	78
PM Peak Ho	ur Fa	ctor •	>	0.	97									Hiç	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	1500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1600-1700	11	332	62	6	411	56	555	46	0	657	1068	67	12	35	0	114	19	15	17	0	51	165	1233

Comments:

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

325

441 45

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Printed on: 11/5/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Printed on: 11/5/2022

Turning Movement Count Summary, OFF and EVENING Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

Comments:

Flow Diagrams: OFF Peak

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

Comments:

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

Turning Movement Count Bicycle Summary Flow Diagram

Totals Comments

Printed on: 11/5/2022

1600-1700

1700-1800

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

0

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Ottawa St.	March Rd.	Total	Appleton Side Rd.	Ramsay Conc. 11A	Total	Total
0700-0800	0	0	0	0	0	0	0
0800-0900	0	0	0	0	2	2	2
0900-1000	1	0	1	0	0	0	1
1130-1230	4	0	4	0	0	0	4
1230-1330	0	0	0	0	0	0	0
1500-1600	0	2	2	0	2	2	4
1600-1700	3	0	3	0	0	0	3
1700-1800	0	0	0	0	0	0	0
Totals	8	2	10	0	4	4	14

Comments:

School buses comprise 6.90% of the heavy vehicle traffic. There were a few minor conflicts during the day.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Summary: All Vehicles

Ottawa Street & Menzie Road/Paterson Street

AII	IIOI	πe,	UI	١

Survey Date:	Tuesday, November	r 01, 2022		Start Time:	0700	AADT Factor:	1.0
Weather AM:	Overcast 10° C	Survey Duration:	8 Hrs.	Survey Hours:	0700-1000,	1130-1330 & 1500-1800	

Weather PM: Mostly Sunny 16° C Surveyor(s): T. Carmody

TTCULITCI I		moon	Cuili	19 10							_	Oui v	Cyon	٠,٠		1. Ou	iiiiou	y					
		Ott	awa	St.			Ott	awa	St.				Pate	ersoi	n St			Mer	ızie	Rd.			
		Ea	stbou	ınd	'		We	stboı	ınd				No	rthbou	ınd			Sou	ıthbo	und			
Time	LT	ST	RT	IJТ	E/B	LT	ST	RT	UT	W/B	Street	LT	ST	RT	UT	N/B	LT	ST	RT	UT	S/B	Street	Grand
Period	-	5		5	Tot		٥.		5	Tot	Total	-	5	•	5	Tot	-	٥.	-	5	Tot	Total	Total
0700-0800	0	487	35	0	522	30	238	1	0	269	791	30	4	58	0	92	8	7	2	0	17	109	900
0800-0900	3	459	63	0	525	60	293	2	0	355	880	26	4	62	0	92	4	12	7	0	23	115	995
0900-1000	1	509	65	0	575	50	370	3	0	423	998	77	9	77	0	163	2	14	6	0	22	185	1183
1130-1230	5	471	26	0	502	40	444	5	0	489	991	45	3	52	0	100	4	2	6	0	12	112	1103
1230-1330	5	431	29	0	465	40	430	8	0	478	943	45	1	33	0	79	3	4	12	0	19	98	1041
1500-1600	8	485	68	0	561	62	606	7	0	675	1236	79	18	44	0	141	9	6	6	0	21	162	1398
1600-1700	4	496	46	0	546	65	744	7	0	816	1362	76	8	57	0	141	7	4	6	0	17	158	1520
1700-1800	2	431	25	0	458	64	634	3	0	701	1159	59	6	30	0	95	3	6	2	0	11	106	1265
Totals	28	3769	357	0	4154	411	3759	36	0	4206	8360	437	53	413	0	903	40	55	47	0	142	1045	9405

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr		Equival 5239			s. These 5225		ated by r 11620			by the 8 1255		on fact 65	or of 1	.39 197	1453	13073
AADT 12-hr	39	Ave 5239	•		olumes. 5225					lent 12-h 1255			OT fact	or of: 1	.0 1453	13073
AADT 24 Hr		Hour A								s by the	24 expai		actor o	f 1.31 259	1903	17126

AADT and expansion factors provided by the City of Ottawa

							-				_		-			_							
AM Peak Ho	our Fa	ctor •	•	0.	93									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 0	700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0900-1000	1	509	65	0	575	50	370	3	0	423	998	77	9	77	0	163	2	14	6	0	22	185	1183
OFF Peak H	lour F	actor	→	0.	97									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	3	476	28	0	507	45	439	5	0	489	996	47	3	51	0	101	1	1	9	0	11	112	1108
PM Peak Ho	our Fa	ctor •	>	0.	95									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1545-1645	4	510	47	0	561	60	741	11	0	812	1373	86	8	64	0	158	7	3	5	0	15	173	1546

Comments

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Notes:

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

Printed on: 11/5/2022

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Summary, OFF and EVENING Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Ottawa Street & Menzie Road/Paterson Street Almonte, ON Tuesday, November 01, 2022 **All Vehicles** (Except Bicycles & Electric Scooters) 259 0700-1000, 1130-1330 & 1500-1800 142 117 Hour Survey City of Ottawa Ward ► N/A Ottawa St. Ottawa St. 4243 (D) 4206 Total Volume ⇔ 8397 8428 9405 **⇒ 4154** (B) 4222 **All Pedestrian Crossings** 823 903 (c) 例本规则 62 1726 Total Off Peak Hour Flow Diagram **Evening Peak Hour Flow Diagram** Pedestrian Crossing Pedestrian Crossings 쫎 Menzie Rd. During OFF Peak Hou During EVGN Peak Ho **495** (D) 489 年 (D) 0 (

Flow Diagrams: AM PM Peak

Printed on: 11/5/2022

507 (B)

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: OFF Peak

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

		Ott	awa	St.			Ott	awa	St.			Pate	ersoi	ı St.			Me	nzie	Rd.		
		Eas	tbou	ınd			Wes	stbo	und			Nor	thbo	und			Sou	thbo	und		·
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0	28	2	0	30	3	23	0	0	26	3	0	0	0	3	0	0	1	0	1	60
0800-0900	0	30	2	0	32	5	20	0	0	25	2	0	1	0	3	0	1	0	0	1	61
0900-1000	0	24	6	0	30	2	27	0	0	29	6	0	3	0	9	0	0	0	0	0	68
1130-1230	0	16	0	0	16	2	21	0	0	23	1	0	2	0	3	0	0	0	0	0	42
1230-1330	0	25	0	0	25	1	22	0	0	23	0	0	1	0	1	0	0	0	0	0	49
1500-1600	0	24	8	0	32	2	22	0	0	24	7	2	0	0	9	0	0	0	0	0	65
1600-1700	0	15	0	0	15	1	23	0	0	24	0	0	1	0	1	0	0	0	0	0	40
1700-1800	0	6	0	0	6	0	6	0	0	6	0	0	0	0	0	0	0	1	0	1	13
Totals	0	168	18	0	186	16	164	0	0	180	19	2	8	0	29	0	1	2	0	3	398

Comments:

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

Totals
Comments

1600-1700

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Turning Movement Count Bicycle Summary Flow Diagram

		Ot	tawa	St.			Ot	tawa	St.			Pate	ersor	ı St.			Me	nzie	Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			So	uthbou	und		
Time Period	LT	ST	RT	UT	EB Tot	Ľ	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0800-0900	0	2	0	0	2	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	3
0900-1000	0	1	1	0	2	0	2	0	0	2	0	0	0	0	0	0	2	0	0	2	6
1130-1230	0	2	0	0	2	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	3
1230-1330	0	3	1	0	4	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	5
1500-1600	0	2	1	0	3	0	0	0	0	0	1	1	0	0	2	0	1	0	0	1	6
1600-1700	0	2	0	0	2	2	1	0	0	3	0	0	2	0	2	0	2	0	0	2	9
1700-1800	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0	0	2	3
Totals	0	13	3	0	16	2	4	0	0	6	4	1	2	0	7	0	7	0	0	7	36

Comments:

Printed on: 11/5/2022

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Tille Periou	Ottawa St.	Ottawa St.	Total	Paterson St.	Menzie Rd.	Total	Total
0700-0800	3	1	4	3	3	6	10
0800-0900	3	0	3	2	6	8	11
0900-1000	10	2	12	1	4	5	17
1130-1230	9	4	13	5	12	17	30
1230-1330	4	3	7	3	4	7	14
1500-1600	28	4	32	12	2	14	46
1600-1700	2	1	3	7	6	13	16
1700-1800	3	4	7	6	7	13	20
Totals	62	19	81	39	44	83	164

Comments:

Summary: Bicycles

School buses comprise 15.83% of the heavy vehicle traffic. A crossing guard assisted pedestrians crossing Ottawa Street and Paterson Street before and after school.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Printed on: 11/5/2022

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: All Vehicles AM PM Peak

Turning Movement Count Summary, OFF and EVGN Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Summary Report Including Peak Hours, **AADT and Expansion Factors**

All Vehicles Except Bicycles

Applet	on (Side	Ro	ad	& In	du	stria	l Di	rive											1	Alm	onte	, ON
Survey Da	ite:	Wedr	nesda	y, No	vemb	er 02	2, 2022	2				Star	t Time	e:		0700			AAD	T Fa	ctor:		0.9
Weather Al	M:	Sunny	/ 5° C			Sı	ırvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700-	1000	, 1130)-133	0 & 1	500-1	800	
Weather Pl	/ 1:	Sunny	/ 15° ()								Surv	eyor(s):		J. Mo	usse	au					
		Indu	stria	l Dr				N/A				Ap	plet	on S	ide	Rd.	Ap	pleto	on S	ide	Rd.		
	_	Ea	stbou	ınd	_		We	stbo	und		•	_	No	rthbo	und		_	Sou	ıthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	5		12	1	18						18	13	45		0	58		64	9	0	73	131	149
0800-0900	8		15	0	23						23	27	53		0	80		58	19	0	77	157	180
0900-1000	10		15	0							25		49		0	71		61	8	0	69	140	165
1130-1230	14		23	0							37	18			0	71		69	24	1	94	165	202
1230-1330			6	0							24		68		0	85		65		0	83	168	192
1500-1600	_		26	_							35		82		0	112		85	_	_		212	247
1600-1700			19	0	-						30		71		0	101		106	_	0	132	233	263
1700-1800	_	_	20	0							33		66		0	92		67	9	1	77	169	202
Totals	88		136	1	225						225	183	487		0	670		575	128	2	705	1375	1600

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	E	quivale	nt 12-ho	our ve			These	volume	s are c				ying the										
Equ. 12 Hr	122	0	189	1	313	0	0	0	0	0	313	254	677	0	0	931	0	799	178	3	980	1911	2224
																							_
		Avera	ige daily	12-h	our veh	icle volu	ımes. T	hese v	olumes	are ca	alculate	d by m	ultiplyin	g the e	quivale	ent 12-l	nour to	otals by	the AAI	OT fact	or of: ().9	
AADT 12-hr	110	0	170	1	281	0	0	0	0	0	281	229	609	0	0	838	0	719	160	3	882	1720	2002
																							_
	24-H	our AA	DT. The	se vo	lumes a	are calcu	ılated b	y multi	iplying	the av	erage d	laily 12	-hour ve	hicle vo	olumes	by the	e 12 🕈	24 exp	ansion f	actor o	of 1.31		
AADT 24 Hr		0	223	^	369			- ^		A	369	300	798	0	0	1098	0	040	210	3	1155	2052	262

AADT and expansion factors provided by the City of Ottaw	AADT	and	expansion	factors	provided	by	the	City	of	Ottawa
--	------	-----	-----------	---------	----------	----	-----	------	----	--------

AM Peak Ho	ur Fac	ctor •	>	0.	86									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen (700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total Str	r. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0845-0945	14	0	20	0	34	0	0	0	0	0	34	26	55	0	0	81	0	59	15	0	74	155	189
OFF Peak H	our Fa	ctor	→	0.	81									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total Str	r. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1130-1230	14	0	23	0	37	0	0	0	0	0	37	18	53	0	0	71	0	69	24	1	94	165	202
PM Peak Ho	ur Fac	tor =)	0.	96									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total Str	r. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1615-1715	13	Λ	21	٥	34	Λ	Λ	Λ	Λ	٥	3/	35	72	Λ	Λ	107	Λ	107	27	1	135	2/12	276

Comments:

School buses comprise 7.63% of the heavy vehicle traffic.

Notes:

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4 to 13) Flow Diagram

		Ind	ustrial	Dr.				N/A				Apple	ton Si	de Rd.			Apple	ton Si	de Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			Sou	uthbou	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	1		1	0	2						0	8		0	8		5	0	0	5	15
0800-0900	0		1	0	1						0	5		0	5		6	1	0	7	13
0900-1000	3		0	0	3						1	5		0	6		6	0	0	6	15
1130-1230	0		0	0	0						0	7		0	7		8	0	0	8	15
1230-1330	1		0	0	1						1	11		0	12		9	0	0	9	22
1500-1600	0		0	0	0						0	14		0	14		9	0	0	9	23
1600-1700	0		1	0	1						1	5		0	6		13	1	0	14	21
1700-1800	0		0	0	0						0	2		0	2		4	1	0	5	7
Totals	5		3	0	8						3	57		0	60		60	3	0	63	131

Summary: All Vehicles

School buses comprise 7.63% of the heavy vehicle traffic.

Printed on: 11/5/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

		Ind	ustrial	Dr.				N/A				Apple	ton Si	de Rd.			Apple	ton Si	de Rd		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			So	uthbou	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		1	0	1						0	0		0	0		1	0	0	1	2
0800-0900	0		0	0	0						0	1		0	1		1	0	0	1	2
0900-1000	0		0	0	0						0	0		0	0		0	0	0	0	0
1130-1230	0		0	0	0						0	0		0	0		0	0	0	0	0
1230-1330	0		0	0	0						0	1		0	1		0	0	0	0	1
1500-1600	0		0	0	0						0	0		0	0		1	0	0	1	1
1600-1700	0		0	0	0						0	2		0	2		2	0	0	2	4
1700-1800	0		0	0	0						0	0		0	0		0	0	0	0	0
Totals	0		1	0	1						0	4		0	4		5	0	0	5	10

Comment

School buses comprise 7.63% of the heavy vehicle traffic.

Turning Movement Count Bicycle Summary Flow Diagram

		Ind	ustrial	Dr.				N/A				Apple	ton Si	de Rd			Apple	ton Si	de Rd.		
		Ea	stbou	nd			W	estbou	ınd			No	rthbou	ınd			Sou	ıthboı	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		0	0	0						0	0		0	0		0	0	0	0	0
0800-0900	0		0	0	0						1	0		0	1		0	0	0	0	1
0900-1000	0		2	0	2						0	0		0	0		0	0	0	0	2
1130-1230	1		1	0	2						2	0		0	2		0	1	0	1	5
1230-1330	0		0	0	0						1	0		0	1		2	0	0	2	3
1500-1600	0		2	0	2						4	0		0	4		0	0	0	0	6
1600-1700	0		0	0	0						1	0		0	1		0	1	0	1	2
1700-1800	0		0	0	0						0	1		0	1		0	0	0	0	1
Totals	1		5	0	6						9	1		0	10		2	2	0	4	20

Comment

School buses comprise 7.63% of the heavy vehicle traffic.

Turning Movement Count

Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side (Crossing	Street	South Sid	de Crossing	North Side C	Crossing	Street	Grand
Time Period	Industrial Dr.	N/A	١	Total	Appleto	n Side Rd.	Appleton S	ide Rd.	Total	Total
0700-0800	0			0		0	0		0	0
0800-0900	0			0		0	0		0	0
0900-1000	0			-		0	0		0	0
1130-1230	0			Pedest		0	0		0	0
1230-1330	0		Crossii	ngs Ob	served	0	0		0	0
1500-1600	0			0		0	0		0	0
1600-1700	0			0		0	0		0	0
1700-1800	0			0		0	0		0	0
Totals	0			0		0	0		0	0

Comments

Printed on: 11/5/2022

School buses comprise 7.63% of the heavy vehicle traffic.

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles **Jack Dalgity Street & Old Almonte Road** Almonte, ON **All Vehicles** Thursday, November 03, 2022 650 (Except Bicycles & Electric Scooters) 0700-1000, 1130-1330 & 1500-1800 341 8 Hour Survey City of Ottawa Ward ► N/A ρЮ Jack Dalgity St. Total vehicle volume, all approaches. 263 (A + B + C)⇔ 576 313 All Pedestrian Crossings 113 (C) 131 244 Total PM Peak Hour Flow Diagram AM Peak Hour Flow Diagram Total vehicle volume, all Total vehicle volume, all **=** 54 Pedestrian Crossino Pedestrian Crossin During AM Peak Hr. During PM Peak Hr 48 (B) 57 (B)

Printed on: 11/6/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: All Vehicles AM PM Peak

Turning Movement Count Summary, OFF and EVGN Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Printed on: 11/6/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: All Vehicles OFF EVGN Peak

Jack Dalgity Street & Old Almonte Road

Survey Date: Thursday November 03 2022

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Start Time:

0700

Almonte, ON

AADT Factor:

Our vey Do	iic.	muic	uuy,	14040	MINDO	00, 2	022					Otari		••		0100				u	ctoi.		0.5
Weather All	M:	Clear	& Sur	ny +1	۱° C	Sι	ırvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700	-1000), 1130)-133	0 & 1	500-1	800	
Weather PM	И:	Mainly	/ Clea	r 17°	С							Surv	eyor(s):		J. Mo	usse	au					
	J	ack	Dalg	ity S	St.			N/A				0	ld Al	mor	nte F	₹d.	0	ld Al	mor	nte F	₹d.		
		Ea	stbou	ınd			We	stbo	und				No	rthbo	und			Sou	ıthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	29		4	0	33						33	3	6		0	9		5	14	0	19	28	61
0800-0900	22		10	0	32						32	9	7		0	16		9	16	0	25	41	73
0900-1000	45		6	0	51						51	4	8		0	12		12	18	1	31	43	94
1130-1230	30		6	0	36						36	6	7		1	14		6	24	0	30	44	80
1230-1330	30		4	0	34						34	0	9		0	9		9	23	0	32	41	75
1500-1600	38		5	0	43						43	3	16		0	19		18	40	0	58	77	120
1600-1700	45		6	0	51						51	9	11		0	20		12	51	0	63	83	134
1700-1800	29		4	0	33						33	6	8		0	14		14	37	0	51	65	98
Totals	268		45	0	313						313	40	72		1	113		85	223	1	309	422	735

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	Е	quivale	nt 12-h	our ve	hicle vol	umes.	These	volum	es are c	alculat	ed by m	nultiply	ing the	8-hour	totals	by the 8	3 🖈12	expans	ion fac	tor of	1.39		
Equ. 12 Hr	373	0	63	0	435	0	0	0	0	0	435	56	100	0	1	157	0	118	310	1	430	587	1022
		Averag	ge daily	y 12-ho	our vehic	le vol	ımes. T	hese	volumes	are ca	lculated	d by m	ultiplyin	g the e	quival	ent 12-h	our to	tals by	the AA	DT fac	tor of: 0	.9	
AADT 12-hr	335	0	56	0	392	0	0	0	0	0	392	50	90	0	1	141	0	106	279	1	387	528	919
	24-H	our AAI	DT. The	ese vo	lumes a	re calc	ulated b	oy mul	ltiplying	the av	erage da	aily 12	-hour ve	hicle v	olume	s by the	12 ⇒	24 expa	ansion	factor	of 1.31		
AADT 24 Hr	439	0	74	0	513	0	0	0	0	0	513	66	118	0	2	185	0	139	365	2	506	692	1205

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	ur Fac	tor •	•	0.	.71									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 0)700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
0830-0930	37	0	11	0	48	0	0	0	0	0	48	10	8	0	0	18	0	16	17	1	34	52	100
OFF Peak H	our Fa	ctor	→	0.	.83									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h &	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1130-1230	30	0	6	0	36	0	0	0	0	0	36	6	7	0	1	14	0	6	24	0	30	44	80
PM Peak Ho	ur Fac	tor =		0.	.94									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
15/15-16/15	52	Λ	- 5	0	57	n	n	Λ	٥	Λ	57	7	10	Λ	٥	17	٥	1/	47	Λ	61	78	135

Comments:

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Notes

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/6/2022

Prepared by: thetrafficspecialist@gmail.com

Summary: All Vehicles

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4 to 13) Flow Diagram

		Jack	Dalgit	ty St.				N/A				Old A	lmon	te Rd.			Old A	lmont	e Rd.		
		Ea	stbou	nd			W	estbou	ınd			No	rthbou	ınd			So	uthbou	und		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	2		0	0	2						1	1		0	2		2	1	0	3	7
0800-0900	2		0	0	2						0	0		0	0		0	1	0	1	3
0900-1000	1		5	0	6						3	0		0	3		1	1	0	2	11
1130-1230	2		0	0	2						1	0		1	2		0	2	0	2	6
1230-1330	1		0	0	1						0	0		0	0		0	1	0	1	2
1500-1600	0		1	0	1						0	2		0	2		1	1	0	2	5
1600-1700	5		0	0	5						0	0		0	0		1	2	0	3	8
1700-1800	0		0	0	0						0	1		0	1		1	0	0	1	2
Totals	13		6	0	19						5	4		1	10		6	9	0	15	44

Comments

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

		Jack	Dalgi	ty St.				N/A				Old A	Almont	e Rd.			Old A	lmont	e Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			Soi	ıthboı	ınd		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		0	0	0						0	1		0	1		1	0	0	1	2
0800-0900	0		0	0	0						0	0		0	0		0	0	0	0	0
0900-1000	1		0	0	1						0	0		0	0		1	0	0	1	2
1130-1230	0		0	0	0						0	0		0	0		0	0	0	0	0
1230-1330	0		0	0	0						0	0		0	0		0	0	0	0	(
1500-1600	0		0	0	0						0	2		0	2		0	1	0	1	3
1600-1700	0		0	0	0						0	0		0	0		0	0	0	0	(
1700-1800	0		0	0	0						0	0		0	0		0	0	0	0	(
Totals	1		0	0	1						0	3		0	3		2	1	0	3	7

Comment

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Printed on: 11/6/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles Printed on: 11/6/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Buses Only

Turning Movement Count Bicycle Summary Flow Diagram

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

		Jack	Dalgit	y St.				N/A				Old A	lmon	te Rd.			Old A	Almon	te Rd.		
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			So	uthbo	und		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	1		0	0	1						0	0		0	0		0	0	0	0	1
0800-0900	1		0	0	1						0	0		0	0		0	0	0	0	1
0900-1000	0		0	0	0						0	0		0	0		0	0	0	0	0
1130-1230	0		0	0	0						0	0		0	0		0	0	0	0	0
1230-1330	0		0	0	0						0	0		0	0		0	0	0	0	0
1500-1600	1		0	0	1						0	0		0	0		0	0	0	0	1
1600-1700	0		0	0	0						0	0		0	0		0	3	0	3	3
1700-1800	0		0	0	0						0	0		0	0		0	1	0	1	1
Totals	3		0	0	3						0	0		0	0		0	4	0	4	7

Comment

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Jack Dalgity St.	N/A	Total	Old Almonte Rd.	Old Almonte Rd.	Total	Total
0700-0800	1		1	1	0	1	2
0800-0900	0		0	0	0	0	0
0900-1000	0		0	0	0	0	0
1130-1230	1		1	1	0	1	2
1230-1330	0		0	0	0	0	0
1500-1600	1		1	0	0	0	1
1600-1700	0		0	0	1	1	1
1700-1800	0		0	0	0	0	0
Totals	3		3	2	1	3	6

Comments

School buses comprise 15.91% of the heavy vehicle traffic. There were 10 construction related heavy vehicles.

ROAD NAME	FROM:	то:	AADT	SPEED	MAINTENANCE CLASS	LOWER TIER MUNICIPALITY
16-South Lavant Road	PIN #2264 (Poland)	Hwy 511 (Co Rd 511)	350	80	4	Lanark Highlands
16-Wolf Grove Road	Hwy 511 (Co Rd 511)	Hopetown Hamlet Limit (60 Max Sign)	1100	60	4	Lanark Highlands
16-Wolf Grove Road	Hopetown Hamlet Limit (60 Max Sign)	PIN #4248 (Middleville)	1100	80	3	Lanark Highlands
16-Wolf Grove Road	PIN #4248 (Middleville)	Co Rd 8 (6th Con C Lanark)	1100	60	4	Lanark Highlands
16-Wolf Grove Road	Co Rd 8 (6th Con C Lanark)	PIN #4132 East Ent (Middleville)	1400	60	4	Lanark Highlands
16-Wolf Grove Road	PIN #4132 East Ent (Middleville)	Ramsay Con 1	1400	80	3	Lanark Highlands
16-Wolf Grove Road	Ramsay Con 1	Tatlock Road	1400	80	3	Mississippi Mills
16-Wolf Grove Road	Tatlock Road	Civitan Hall Ent (Almonte)	3000	80	3	Mississippi Mills
16-Almonte Street	Civitan Hall Ent (Almonte)	Christian Street (Co Rd 29)	3200	60	3	Mississippi Mills
	<u> </u>					
16A-Perth Street	Christian Street (Co Rd 29)	Bridge Street	4500	50	3	Mississippi Mills
16A-Bridge Street	Perth Street	Centre of Maclan Bridge	4500	50	3	Mississippi Mills
16A-Queen Street	Centre of Maclan Bridge	Martin Street South	8000	50	3	Mississippi Mills
16A-Martin Street South	Queen Street	Ottawa Street	8000	50	3	Mississippi Mills
						11
17-Derry Side Road	Richmond Road (Co Rd 10)	9th Line Beckwith	650	80	4	Beckwith
17-Cemetery Side Road	9th Line Beckwith	Hwy. #7	1200	50/70	3	Beckwith
17-Appleton Side Road	Hwy. #7	River Road (Co Rd 11)	800	80	4	Beckwith/ Mississippi Mills
17-Appleton Side Road	River Road (Co Rd 11)	March Road (Co Rd 49)	1100	80	3	Mississippi Mills
17-Martin Street North	Ottawa Street	Brookdale Street	2200	50/40	4	Mississippi Mills
17-Martin Street North	Brookdale Street	Railway Crossing	1100	80	3	Mississippi Mills
17-Martin Street North	Railway Crossing	PIN #6466 (Blakenev)	1100	80	3	Mississippi Mills
17-Martin Street North	PIN #6466 (Blakeney)	Blakeney Road (Co Rd 17)	1100	60	4	Mississippi Mills
17-Blakeney Road	Blakeney Road (Co Rd 17)	Ridge Road	650	60	4	Mississippi Mills
17-Blakeney Road	Ridge Road	Panmure Road	650	80	4	Mississippi Mills
17-Panmure Road	Blakeney Road (South)	Blakeney Road (North)	300	80	4	Mississippi Mills
17-Blakeney Road	Panmure Road	Kinburn Sideroad (Co Rd 20)	300	80/60	4	Mississippi Mills
						11
18-Port Elmsley Road	Rideau Ferry Road (Co Rd 1)	PIN #310 DNE Township Office	1150	80	3	Drummond North Elmsley
18-Port Elmsley Road	PIN #310 DNE Township Office	Co. Rd. #43	1150	60	4	Drummond North Elmsley
						,
19-Bennett Lake Road	Fallbrook Road (Co Rd 7)	PIN #155 (Fallbrook)	450	50	5	Tay Valley
19-Bennett Lake Road	PIN #155 (Fallbrook)	Osprey Road	450	80	4	Tay Valley
19-Bennett Lake Road	Osprey Road	Start of Gravel	120	80	4	Tay Valley
19-Bennett Lake Road	Start of Gravel	End of Gravel	120	80	4	Tay Valley
19-Bennett Lake Road	End of Gravel	Maberly Elphin Rd. (Co Rd 36)	150	80	4	Tay Valley
		(0 2 1 1 2 0)				
20-Kinburn Side Road	Timmins Road (Ottawa Bndry)	Blakeney Rd. (Co Rd 17)	1900	80	3	Mississippi Mills
20-Kinburn Side Road	Blakeney Rd. (Co Rd 17)	Co Rd 29 North	1900	60	4	Mississippi Mills
20-Waba Road	Co. Rd. #29 North	Five Arches Drive	1650	50	4	Mississippi Mills
20-Waba Road	Five Arches Drive	Shaw Road (Co. Rd. #22)	1650	80	3	Mississippi Mills
20-Waba Road	Shaw Road (Co. Rd. #22)	Campbell Side Rd. (Co. Rd. #24)	1000	80	3	Mississippi Mills
20-Waba Road	Campbell Side Rd. (Co. Rd. #24)	Robertson Line (Renfrew Bndry)	1000	80	3	Mississippi Mills
		The second secon	1.000			
21-Lally Road	Narrows Lock Rd. (Co. Rd. #14)	Lally Lake Drive	100	60	5	Tay Valley
21-Elm Grove Road	Lally Lake Drive	Tay Valley Sign	600	60	4	Tay Valley
	Tay Valley Sign	Rideau Ferry Rd. (Co. Rd. #1)	1600	60	4	Drummond North Elmsley
21-Elm Grove Road	Trav vallev Slutt					

ROAD NAME	FROM:	TO:	AADT	SPEED	MAINTENANCE CLASS	LOWER TIER MUNICIPALITY
22-Shaw Road	Waba Road (Co. Rd. #20)	Lunney Road (Ottawa Bndry)	500	80	4	Mississippi Mills
23-Rosedale Road South	Co. Rd. #43	Guthrie Road	600	80	4	Montague
23-Rosedale Road South	Guthrie Road	Roger Stevens Drive (Co. Rd. #4)	600	60/80	4	Montague
24-Peneshula Road	Snye Road	Bellamy Road	800	60	4	Lanark Highlands/ Mississippi Mills
24-Bellamy Road	Peneshula Road	4th Con. Pakenham	900	80	4	Mississippi Mills
24-4th Con. Pakenham	Bellamy Road	Campbell Side Road	900	80	4	Mississippi Mills
24-Campbell Side Road	4th Con. Pakenham	Waba Road (Co. Rd. #20)	600	80	4	Mississippi Mills
29-McNeely Avenue	Hwy. #7	Lake Avenue	12000	80	2	Town of Carleton Place
29-McNeely Avenue	Lake Avenue	Town Line Rd. East (Co. Rd. #29)	11000	60	3	Town of Carleton Place
29-Town Line Road East	McNeely Avenue	Ramsay Con. 8	9000	50	3	Town of Carleton Place
29-County Rd. #29 South	Ramsay Con. 8	Wilson Street (Co. Rd. #11)	8000	80	2	Mississippi Mills
29-County Rd. #29 South	Wilson Street (Co. Rd. #11)	Perth Street (Co. Rd. #16A)	6000	80	2	Mississippi Mills
29-Christian Street	Perth Street (Co. Rd. #16A)	Almonte Street (Co. Rd. #16)	5000	70	3	Mississippi Mills
29-Christian Street	Almonte Street (Co. Rd. #16)	Gleeson Road	3700	70	3	Mississippi Mills
29-County Rd. #29 North	Gleeson Road	Snedden Road	3700	80	3	Mississippi Mills
29-County Rd. #29 North	Snedden Road	McWatty Road	3700	80	3	Mississippi Mills
29-County Rd. #29 North	McWatty Road	Waba Road (Co. Rd. #20)	3700	50	4	Mississippi Mills
29-County Rd. #29 North	Waba Road (Co. Rd. #20)	Kinburn Sideroad (Co. Rd. #20)	2800	50	4	Mississippi Mills
29-County Rd. #29 North	Kinburn Sideroad (Co. Rd. #20)	Walter Bradley Road	2800	80	3	Mississippi Mills
29-County Rd. #29 North	Walter Bradley Road	Lanark County Sign (Ottawa Bndry)	2800	80	3	Mississippi Mills/ City of Ottawa
36-Bolingbroke Road	Leeds Bndry	Althorpe Road (Co. Rd. #6)	800	80	4	Tay Valley
36-Bolingbroke Road	Althorpe Road (Co. Rd. #6)	Hanna Road	750	80	4	Tay Valley
36-Bolingbroke Road	Hanna Road	Maberly Station Road	500	80	4	Tay Valley
36-Bolingbroke Road	Maberly Station Road	Hwy. #7	500	60	4	Tay Valley
36-Maberly Elphin Road	Hwy. #7	PIN #400 (Maberly)	600	60	4	Tay Valley
36-Maberly Elphin Road	PIN #400 (Maberly)	Bennett Lake Rd. (Co. Rd. #19)	600	80	4	Tay Valley
36-Maberly Elphin Road	Bennett Lake Rd. (Co. Rd. #19)	LDNS Sign (Twp Bndry)	600	80	4	Tay Valley
36-Elphin Maberly Road	LDNS Sign (Twp Bndry)	Elphin Hamlet Sign West	600	80	4	Lanark Highlands
36-Elphin Maberly Road 36-Elphin Maberly Road	Elphin Hamlet Sign West	Co Rd 12 (McDonalds Corners Rd)	500	60 60	4	Lanark Highlands
36-Elphin Maberly Road	Co Rd 12 (McDonalds Corners Rd)	Elphin Hamlet Sign North	500		4	Lanark Highlands
36-Elphin Maberly Road	Elphin Hamlet Sign North	PIN #3923 (Frontenac Bndry)	500	60/80	4	Lanark Highlands
43-Hwy 43	Merrickville Bndry (West)	Rosedale Rd. S (Co. Rd. #23)	3600	80	3	Montague
43-Hwy 43	Rosedale Rd. S (Co. Rd. #23)	New Smiths Falls Boundary	4800	80	3	Montague
43-Hwy 43	Mazie Street (SFalls Bndry)	Station Road	9000	80	2	Drummond North Elmsley
43-Hwy 43	Station Road	Port Elmsley Rd. (Co. Rd. #18)	9000	60	3	Drummond North Elmsley
43-Hwy 43	Port Elmsley Rd. (Co. Rd. #18)	Meadow Lane	8500	60	3	Drummond North Elmsley
43-Hwy 43	Meadow Lane	Irwin Street	7000	80	3	Drummond North Elmsley/ Town of Perth
TO-1 1WY 40	IVICACOW LATIC	II WIII OUGGE	7000	- 00	3	Diaminona Notal Ellisiey/ Town of Fertil
49-March Road	Ottawa Bndry	Appleton Side Rd. (Co. Rd. #17)	7500	80	2	Mississippi Mills
+3-IVIAI CIT NOAU	Ottawa Difuty	Appleton Side Na. (Co. Na. #17)	7500	00		Inini iddiceiesiinii
511-Lanark Road	Hwy. #7	PIN #40 (Perth Bndry)	8000	60	3	Tay Valley/ Town of Perth
511-Hwy 511	PIN #40 (Perth Bndry)	Clarchris Road	8000	70	3	Tay Valley/ Drummond North Elmsley
511-Hwy 511	Clarchris Road	PIN #1325 (Balderson South)	8000	80	2	Tay Valley/ Drummond North Elmsley
JII-IIWY JII	Ciai Cilio Nuau	File # 1929 (Daluel Sull Suull)	0000	00		ray valicy/ Diditilitiona North Elmsley

FIGURE 2.3 2019 PEAK AM AND PM HOUR TRAFFIC COUNTS

Appendix C

Background Development Volumes

FIGURE 4.1
PEAK AM AND PM HOUR SITE GENERATED TRIPS

Appendix D

2022 Existing Synchro and Sidra Worksheets

	۶	→	\rightarrow	•	←	•	4	†	-	-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	1	7		4			4	
Traffic Volume (vph)	1	509	65	50	370	3	77	9	77	2	14	6
Future Volume (vph)	1	509	65	50	370	3	77	9	77	2	14	6
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		1.00		1.00	1.00	0.97		0.99			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.98		1.00	1.00	0.85		0.94			0.96	
Flt Protected		1.00		0.95	1.00	1.00		0.98			1.00	
Satd. Flow (prot)		1658		1625	1664	1440		1518			1659	
Flt Permitted		1.00		0.43	1.00	1.00		0.84			0.97	
Satd. Flow (perm)		1657		730	1664	1440		1302			1619	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	1	547	70	54	398	3	83	10	83	2	15	6
RTOR Reduction (vph)	0	4	0	0	0	1	0	41	0	0	5	0
Lane Group Flow (vph)	0	614	0	54	398	2	0	135	0	0	18	0
Confl. Peds. (#/hr)	4		1	1		4	10		2	2		10
Confl. Bikes (#/hr)			2			2						2
Heavy Vehicles (%)	2%	5%	9%	4%	7%	2%	8%	2%	4%	2%	2%	2%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2	_		6		6	8			4	•	
Actuated Green, G (s)		55.5		55.5	55.5	55.5		14.8			14.8	
Effective Green, q (s)		55.5		55.5	55.5	55.5		14.8			14.8	
Actuated g/C Ratio		0.67		0.67	0.67	0.67		0.18			0.18	
Clearance Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		1113		490	1118	967		233			290	
v/s Ratio Prot					0.24			200			200	
v/s Ratio Perm		c0.37		0.07	0.21	0.00		c0.10			0.01	
v/c Ratio		0.55		0.11	0.36	0.00		0.58			0.06	
Uniform Delay, d1		7.1		4.8	5.8	4.5		31.0			28.1	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		2.0		0.5	0.9	0.0		3.5			0.1	
Delay (s)		9.0		5.3	6.7	4.5		34.5			28.2	
Level of Service		Α.		Α.	A	Α.		C			C	
Approach Delay (s)		9.0		- '`	6.5	- '`		34.5			28.2	
Approach LOS		A			A			С			C	
Intersection Summary												
HCM 2000 Control Delay			12.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	itv ratio		0.56									
Actuated Cycle Length (s)	,		82.6	S	um of los	t time (s)			12.3			
Intersection Capacity Utilizat	ion		75.5%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group			-									

ane Configurations	
trology, siveh towement Sear Sear Sear Sear Sear	Internation
Section Sect	
ane Configurations	
raffic Vol, veh/h raffic Veh/h raffic Vol, veh/h raffic Vol, veh/h raffic Vol, veh/h raffic Veh/h raffic Vol, veh/h raffic Vol, veh/h raffic Veh/h raffic Vol, veh/h raffic Veh/h	Movement
uture Vol, veh/h uture Vol, veh/h inforcing Peds, #/hr gigor Control Stop Stop Free Free	Lane Configurations
onflicting Peds, #hr 0 -	
Stop Stop Free Free Free Free T Channelized None	
T Channelized - None - None	
torage Length	Sign Control
eh in Median Storage, # 0	RT Channelized
rade, % 0 0 - 0 0 0 - eak Hour Factor 86 86 86 86 86 86 86 86 86 86 86 86 86	Storage Length
eak Hour Factor 86 9 17 aijor/Minor Minor2 Major1 Major2 Major2 Major1 Major2 Major2 Major3	
eavy Vehicles, % 21 2 4 9 10 2 vmt Flow 16 23 30 64 69 17	Grade, %
Number N	Peak Hour Factor
	Heavy Vehicles, %
onflicting Flow All 202 78 86 0 - 0 Stage 1 78 - <td< td=""><td>Mvmt Flow</td></td<>	Mvmt Flow
onflicting Flow All 202 78 86 0 - 0 Stage 1 78 - <td< td=""><td></td></td<>	
onflicting Flow All 202 78 86 0 - 0 Stage 1 78 - <td< td=""><td>Majar/Minar N</td></td<>	Majar/Minar N
Stage 1	
Stage 2	
ritical Hdwy Stg 1	
ritical Hdwy Stg 1 5.61	
ritical Hdwy Stg 2 5.61	
Stage 1	
ot Cap-1 Maneuver 746 983 1498 Stage 1 899	
Stage 1 899	Follow-up Hdwy
Stage 2 857 -	Pot Cap-1 Maneuver
Altonon blocked, %	Stage 1
Nov Cap-1 Maneuver	Stage 2
Not Cap-2 Maneuver 730	Platoon blocked, %
Stage 1	Mov Cap-1 Maneuver
Stage 1	
Stage 2 857	
Description	
CM Control Delay, s 9.4 2.4 0 CM LOS A Second Code Code Code Code Code Code	Olugo 2
CM Control Delay, s 9.4 p. 2.4 p. 0 CM LOS A A SBT SBR sinor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR apacity (veh/h) 1498 - 860 - CM Lane V/C Ratio 0.02 - 0.046 - CM Control Delay (s) 7.5 0 9.4 - CM Lane LOS A A A -	
CM LOS A sinor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR apacity (veh/h) 1498 - 860 - CM Lane V/C Ratio 0.02 - 0.046 - CM Control Delay (s) 7.5 0 9.4 CM Lane LOS A A A	Approach
NBL NBT EBLn1 SBT SBR NBT EBLn2 SBR NBT EBLn2 SBR NBT EBLn3 SBR NBT	
apacity (veh/h) 1498 - 860 CM Lane V/C Ratio 0.02 - 0.046 CM Control Delay (s) 7.5 0 9.4 CM Lane LOS A A A	HCM LOS
apacity (veh/h) 1498 - 860 CM Lane V/C Ratio 0.02 - 0.046 CM Control Delay (s) 7.5 0 9.4 CM Lane LOS A A A	
apacity (veh/h) 1498 - 860 CM Lane V/C Ratio 0.02 - 0.046 CM Control Delay (s) 7.5 0 9.4 CM Lane LOS A A A	Minor Lane/Major Mum
CM Lane V/C Ratio 0.02 - 0.046 CM Control Delay (s) 7.5 0 9.4 CM Lane LOS A A A	
CM Control Delay (s) 7.5 0 9.4 CM Lane LOS A A A	
CM Lane LOS A A A	
CM 95th %tile Q(veh) 0.1 - 0.1	
	HCM 95th %tile Q(veh)

	•	→	•	•	—	4	1	†	~	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ î>		ሻ	ħβ			ની	7	7	7>	
Traffic Volume (vph)	105	371	43	17	276	51	52	27	20	56	18	88
Future Volume (vph)	105	371	43	17	276	51	52	27	20	56	18	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.98		1.00	0.98			1.00	0.85	1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3264		1658	3239			1689	1483	1658	1528	
Flt Permitted	0.49	1.00		0.49	1.00			0.73	1.00	0.70	1.00	
Satd. Flow (perm)	857	3264		859	3239			1275	1483	1224	1528	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	403	47	18	300	55	57	29	22	61	20	96
RTOR Reduction (vph)	0	6	0	0	12	0	0	0	19	0	85	0
Lane Group Flow (vph)	114	444	0	18	343	0	0	86	3	61	31	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	52.2	46.8		43.8	42.6			8.7	8.7	8.7	8.7	
Effective Green, g (s)	52.2	46.8		43.8	42.6			8.7	8.7	8.7	8.7	
Actuated g/C Ratio	0.71	0.63		0.59	0.58			0.12	0.12	0.12	0.12	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	663	2067		522	1867			150	174	144	179	
v/s Ratio Prot	c0.01	c0.14		0.00	0.11						0.02	
v/s Ratio Perm	0.11			0.02				c0.07	0.00	0.05		
v/c Ratio	0.17	0.21		0.03	0.18			0.57	0.01	0.42	0.17	
Uniform Delay, d1	3.6	5.8		6.2	7.4			30.8	28.8	30.3	29.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.2		0.0	0.2			5.2	0.0	2.0	0.5	
Delay (s)	3.7	6.0		6.2	7.6			36.1	28.8	32.3	29.8	
Level of Service	Α	Α		Α	Α			D	С	С	С	
Approach Delay (s)		5.5			7.6			34.6			30.7	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			12.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.28									
Actuated Cycle Length (s)			73.9	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliz	ation		44.1%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
0.141 1.1												

С	Critical	Lane	Group

Intersection						
Int Delay, s/veh	5.2					
**		EDD	NDI	NDT	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	44	40	ર્ન	^	47
Traffic Vol, veh/h	37	11	10	8	16	17
Future Vol, veh/h	37	11	10	8	16	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	71	71	71	71	71	71
Heavy Vehicles, %	3	45	30	2	6	6
Mvmt Flow	52	15	14	11	23	24
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	74	35	47	0	-	0
Stage 1	35	-	-	-	-	-
Stage 2	39	-		-	-	-
Critical Hdwy	6.43	6.65	4.4	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-		-
Critical Hdwy Stg 2	5.43	_		-	-	-
Follow-up Hdwy		3.705	2.47	-		-
Pot Cap-1 Maneuver	927	927	1398	-	-	-
Stage 1	985	-	-			-
Stage 2	981					
Platoon blocked, %	301	_	_			
Mov Cap-1 Maneuver	918	927	1398			
Mov Cap-1 Maneuver	918	321	1000	- :		_
	975	-	-	-	-	-
Stage 1	981					
Stage 2	981	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.2		4.2		0	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1398	-	920	-	-
HCM Lane V/C Ratio		0.01		0.073		
HCM Control Delay (s	١	7.6	0	9.073		

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

0 9.2 - -

- 0.2 - -

A A A - -

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDI/	TNDL	सी	1	אומט
Traffic Vol, veh/h	13	21	35	~	107	27
	13					
Future Vol, veh/h		21	35	72	107	27
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mymt Flow	14	22	36	75	111	28
	Minor2		Major1		Major2	
Conflicting Flow All	272	125	139	0	-	0
Stage 1	125	-	-	-	-	-
Stage 2	147	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.345	2.227	-	-	-
Pot Cap-1 Maneuver	717	918	1438	-	-	-
Stage 1	901	-	-	-	-	-
Stage 2	880	-	-	-	-	_
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	698	918	1438	-		_
Mov Cap-2 Maneuver			1400			
Stage 1	878					
Stage 2	880					
Stage 2	000					-
Approach	EB		NB		SB	
HCM Control Delay, s	9.6		2.5		0	
HCM LOS	A					
		N.D.	LIDE			
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1438	-		-	-
HCM Lane V/C Ratio		0.025		0.043	-	-
HCM Control Delay (s)	7.6	0	9.6	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh	1)	0.1	-	0.1	-	-
,						

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

	•	-	*	1	—	•	4	†	1	1	. ↓	
Intersection	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Int Delay, s/veh 4.3 Lane Configurations	*	† 1>	LDIT	*	†	11511	HDE	4	#	*	1	
Tage Malana (alb)	84	388	97	27	633	61	139	44	24	46	27	
Future Volume (vol)	84	388	97	27	633	61	139	44	24	46	27	
Lane Configurations Y	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	
Trainic Voi, Ven/n 52 5 / 10 14 4/	5.0	6.2	1000	5.0	6.2	1000	1000	6.0	6.0	6.0	6.0	
Future Vol, Ven/n 52 5 / 10 14 4/	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Conflicting Peds, #/nr U U 1 U U U	1.00	0.97		1.00	0.99			1.00	0.85	1.00	0.89	
Sign Control Stop Stop Free Free Free Free	0.95	1.00		0.95	1.00			0.96	1.00	0.95	1.00	
RT Unannelized - None - None - None - None	1658	3217		1658	3272			1681	1483	1658	1546	
Storage Length U	0.28	1.00		0.46	1.00			0.70	1.00	0.58	1.00	
Ven in Median Storage, # U U U -	492	3217		797	3272			1222	1483	1010	1546	
Grade, % U U U -	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
PERK HOUI FRICIOI 94 94 94 94 94	91	422	105	29	688	0.92	151	48	26	50	29	
Heavy Vehicles, % 10 2 2 2 7 4 Adj. Flow (vph)			105		880	00	151	48		5U 0		
Mmt Flow 55 5 7 11 15 50 RTOR Reduction (vph)	0	18	•	0	7.47	0	•	•	20	•	71	
Lane Group Flow (vph)	91	509	0	29	747	0	0	199	6	50	50	
Maior/Minor Minor2 Maior1 Maior2 Protected Phases	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
1 Total Call Tildaes	5	2		1	6			8			4	
Conflicting Flow All 66 41 66 0 - 0	2			6			8		8	4		
Stage 1 41 Actuated Green, G (s)	46.9	40.6		39.1	36.7			17.4	17.4	17.4	17.4	
Stage 2 25 Effective Green, g (s)	46.9	40.6		39.1	36.7			17.4	17.4	17.4	17.4	
ritical Hdwy 6.5 6.22 4.12 Actuated g/C Ratio	0.60	0.52		0.50	0.47			0.22	0.22	0.22	0.22	
critical Hdwy Stg 1 5.5 Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
ollow-up Hdwy 3.59 3.318 2.218 Lane Grp Cap (vph)	392	1683		428	1547			274	332	226	346	Ī
ot Cap-1 Maneuver 920 1030 1536 v/s Ratio Prot	c0.02	c0.16		0.00	c0.23						0.03	Ī
Stage 1 961 w/s Ratio Perm	0.12			0.03				c0.16	0.00	0.05		
Stage 2 977 v/c Ratio	0.23	0.30		0.07	0.48			0.73	0.02	0.22	0.14	
Platoon blocked, % Uniform Delay, d1	7.1	10.5		9.7	14.0			27.9	23.4	24.6	24.1	
Nov Cap-1 Maneuver 914 1029 1535 Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	T
Nov Cap-2 Maneuver 914 Incremental Delay, d2	0.3	0.5		0.1	1.1			9.2	0.0	0.5	0.2	
Stage 1 955 Delay (s)	7.4	10.9		9.8	15.1			37.1	23.5	25.1	24.3	
Stage 2 976	A	В		Α.	В			D	C	C	C	
Approach Delay (s)	А	10.4		А	14.9			35.5	U	U	24.5	
Annual Local		В			14.5 B			D.5			24.5 C	i
pploacif Eb Nb Ob		D			D			U			C	
HCM Control Delay, s 9.2 3 0 Intersection Summary												
HCM LOS A	V		16.8	Н	ICM 2000	Level of	Service		В			П
HCM 2000 Volume to C.			0.53									f
Vinor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR Actuated Cycle Length (77.6	S	um of los	t time (s)			17.2			i
Interception Consolid II			57.0%		CU Level		9		В			1
Capacity (Verint) 1939 - 929			15									ė
HGM Lane V/C Ratio 0.005 - 0.066 Critical Lane Group C Critical Lane Group												

0 9.2 - -

- 0.2 - -

- -

A A

MOVEMENT SUMMARY

Folder: General)]

Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Apple	eton												
1	L2	44	2.0	48	2.0	0.101	8.9	LOSA	0.4	2.7	0.41	0.59	0.41	48.4
2	T1	7	2.0	8	2.0	0.101	3.4	LOS A	0.4	2.7	0.41	0.59	0.41	47.8
3	R2	41	2.0	45	2.0	0.101	3.7	LOS A	0.4	2.7	0.41	0.59	0.41	46.4
Appr	oach	92	2.0	101	2.0	0.101	6.1	LOSA	0.4	2.7	0.41	0.59	0.41	47.5
East	CR 49													
4	L2	31	2.0	34	2.0	0.111	7.7	LOS A	0.6	4.3	0.20	0.35	0.20	49.8
5	T1	271	2.0	298	2.0	0.111	2.2	LOS A	0.6	4.4	0.20	0.30	0.20	49.6
6	R2	15	2.0	16	2.0	0.111	2.7	LOS A	0.6	4.4	0.19	0.26	0.19	48.3
Appr	oach	317	2.0	348	2.0	0.111	2.8	LOSA	0.6	4.4	0.20	0.30	0.20	49.5
North	n: Rams	say												
7	L2	26	2.0	29	2.0	0.058	8.7	LOS A	0.2	1.5	0.38	0.55	0.38	48.5
8	T1	11	2.0	12	2.0	0.058	3.2	LOS A	0.2	1.5	0.38	0.55	0.38	47.9
9	R2	17	2.0	19	2.0	0.058	3.5	LOS A	0.2	1.5	0.38	0.55	0.38	46.5
Appr	oach	54	2.0	59	2.0	0.058	5.9	LOSA	0.2	1.5	0.38	0.55	0.38	47.7
West	: Ottaw	а												
10	L2	8	2.0	9	2.0	0.138	7.8	LOS A	0.7	5.2	0.22	0.29	0.22	50.3
11	T1	348	2.0	382	2.0	0.138	2.3	LOSA	0.7	5.3	0.21	0.28	0.21	49.7
12	R2	37	2.0	41	2.0	0.138	2.7	LOSA	0.7	5.3	0.20	0.28	0.20	48.3
Appr	oach	393	2.0	432	2.0	0.138	2.4	LOS A	0.7	5.3	0.21	0.28	0.21	49.6
All V	ehicles	856	2.0	941	2.0	0.138	3.2	LOSA	0.7	5.3	0.24	0.34	0.24	49.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: PLUS / IPC | Processed: November 23, 2022 2-35.55 PM | Project: C:Users/AndrewHarte/CGH TRANSPORTATION/CGH Working - Documents/Projects/2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \ 2022-142 Sidra 2022-1122 sigr9

MOVEMENT SUMMARY

♥ Site: 101 [Ottawa/CR49 & Appleton/Ramsay Existing PM (Site Folder: General)]

Site Category: (None)

Roundabout

2 TAPPROACE	L2 T1 R2 ch	VOLU [Total veh/h ton 67 12 35 114	2.0 2.0 2.0 2.0	FLO [Total veh/h	2.0 2.0 2.0	0.116 0.116	sec	Service LOS A	QUE [Veh. veh	Dist] m	Que	Stop Rate	No. Cycles	Speed km/h
1 L 2 T 3 F Approac East: CF 4 L 5 T	L2 T1 R2 ch	67 12 35	2.0 2.0 2.0	69 12 36	2.0 2.0	0.116		1.06.4						KIII/I
2	T1 R2 ch	12 35	2.0 2.0	12 36	2.0		8.8	1064						
3 F Approac East: CF 4 L 5 1 6 F	R2 ch	35	2.0	36		0.116			0.5	3.2	0.41	0.60	0.41	48.
Approace East: CF 4 L 5 T	ch				2.0		3.3	LOSA	0.5	3.2	0.41	0.60	0.41	47.
East: CF 4 L 5 T		114	2.0	440		0.116	3.6	LOSA	0.5	3.2	0.41	0.60	0.41	46.
4 L 5 T 6 F	R 49			118	2.0	0.116	6.6	LOS A	0.5	3.2	0.41	0.60	0.41	47.4
5 1 6 F														
6 F	L2	56	2.0	58	2.0	0.221	7.9	LOS A	1.3	9.4	0.28	0.36	0.28	49.6
-	T1	555	2.0	572	2.0	0.221	2.4	LOS A	1.3	9.6	0.27	0.32	0.27	49.
Approac	R2	46	2.0	47	2.0	0.221	2.8	LOS A	1.3	9.6	0.26	0.28	0.26	48.0
	ch	657	2.0	677	2.0	0.221	2.9	LOS A	1.3	9.6	0.27	0.32	0.27	49.2
North: F	Ramsa	ay												
7 L	L2	19	2.0	20	2.0	0.060	9.5	LOS A	0.2	1.6	0.50	0.61	0.50	48.4
8	T1	15	2.0	15	2.0	0.060	4.0	LOS A	0.2	1.6	0.50	0.61	0.50	47.8
9 F	R2	17	2.0	18	2.0	0.060	4.3	LOS A	0.2	1.6	0.50	0.61	0.50	46.4
Approac	ch	51	2.0	53	2.0	0.060	6.2	LOS A	0.2	1.6	0.50	0.61	0.50	47.
West: O	Ottawa	ì												
10 L	L2	17	2.0	18	2.0	0.138	7.9	LOS A	0.7	5.2	0.24	0.31	0.24	50.0
11 7	T1	332	2.0	342	2.0	0.138	2.4	LOS A	0.7	5.3	0.23	0.30	0.23	49.6
12 F	R2	62	2.0	64	2.0	0.138	2.8	LOS A	0.7	5.3	0.22	0.29	0.22	48.2
Approac	ch	411	2.0	424	2.0	0.138	2.6	LOS A	0.7	5.3	0.23	0.30	0.23	49.4
All Vehic		1233	2.0	1271	2.0	0.221	3.3	LOSA	1.3	9.6	0.28	0.35	0.28	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: PLUS / 1PC | Processed: November 23, 2022 2:35:58 PM

Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2022-142 Houchaimi Mill Valley Estates\DATA\Sidra \2022-142 Sidra 2022-11-22.sip9

Appendix E

Signal Warrants

Jack Dalgity Stree @ Paterson Street 2027 Future Background

Justification #7

		Minimum R	Requirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	69	10%	10%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	39	23%	10%	NO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	43	6%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	22	30%	6%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volume estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. Finitersection factor corrected, applies only to 18

Jack Dalgity Stree @ Paterson Street 2032 Future Background

		Minimum R	equirement	Minimum R	equirement		Compliance			
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elitile 76		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	80	11%	11%	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	39	23%	1176	NO	
2 Dolay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	53	7%			
Z. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	22	30%	7%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. T-intersection factor corrected, applies only to 18

Jack Dalgity Stree/Access #1 @ Paterson Street 2027 Future Total

Justification #7

		Minimum F	Requirement	Minimum R	equirement		Compliance			
Justification	Description	1 Lane	1 Lane Highway		re Lanes	Sect	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elitile 76		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	119	17%	17%	No	
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	53	31%	1/70	INO	
	A. Vehicle volumes, major street (average hour)	480	720	600	900	66	9%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	27	36%	9%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volume estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. Finitersection factor corrected, applies only to 18

Jack Dalgity Stree/Access #1 @ Paterson Street 2032 Future Total

		Minimum R	Requirement	Minimum R	Requirement		Compliance			
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	130	18%	18%	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	53	31%	18%	INO	
2. Dolay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	77	11%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	27	36%	11%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. -Intersection factor corrected, applies only to 18

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	190	26%	26%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	67	39%	20%	NO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	145	20%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	36	47%	20%	No

- Streets (average nour)

 Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. T-intersection factor corrected, applies only to 18

Access #2 @ Appleton Side Road 2032 Future Total

		Minimum R	Requirement	Minimum R	Requirement		Compliance			
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	198	28%	28%	No	
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	67	39%	20%	INO	
2 Dolay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	154	21%			
Z. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	36	47%	21%	No	

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. T-intersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2027 Future Background

Justification #7

		Minimum R	Requirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	563	78%	48%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	82	48%	40%	NO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	481	67%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	48	63%	63%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volume estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. Finitersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2032 Future Background

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	602	84%	51%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	87	51%	51%	INO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	516	72%		
Z. Delay to cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	50	67%	67%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. T-intersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2027 Future Total

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	638	89%	69%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	118	69%	09%	NO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	520	72%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	52	69%	69%	No

- Notes
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volume estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. Finitersection factor corrected, applies only to 18

Ottawa St/March Rd (CR 49) and Appleton Side Rd (CR 17)/Ramsay Con 11A 2032 Future Total

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Ellule 76	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	678	94%	72%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	122	72%	7270	INO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	556	77%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	55	73%	73%	No

- Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012

 2. Lowest section percentage governs justification

 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors

 4. T-intersection factor corrected, applies only to 18

Appendix F

2027 Future Background Synchro and Sidra Worksheets

	۶	→	\rightarrow	•	←	*	\blacktriangleleft	1	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	1	7		4			4	
Traffic Volume (vph)	1	550	70	54	401	3	83	9	83	2	14	6
Future Volume (vph)	1	550	70	54	401	3	83	9	83	2	14	6
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		1.00		1.00	1.00	0.97		0.99			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.98		1.00	1.00	0.85		0.94			0.96	
Flt Protected		1.00		0.95	1.00	1.00		0.98			1.00	
Satd. Flow (prot)		1658		1625	1664	1440		1517			1659	
Flt Permitted		1.00		0.40	1.00	1.00		0.84			0.97	
Satd. Flow (perm)		1658		689	1664	1440		1301			1618	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	1	591	75	58	431	3	89	10	89	2	15	6
RTOR Reduction (vph)	0	4	0	0	0	1	0	42	0	0	5	0
Lane Group Flow (vph)	0	663	0	58	431	2	0	146	0	0	18	0
Confl. Peds. (#/hr)	4	000	1	1		4	10		2	2		10
Confl. Bikes (#/hr)			2	-		2			=	=		2
Heavy Vehicles (%)	2%	5%	9%	4%	7%	2%	8%	2%	4%	2%	2%	2%
Turn Type	Perm	NA	0,0	Perm	NA	Perm	Perm	NA	170	Perm	NA	270
Protected Phases	1 01111	2		1 01111	6	1 01111	1 01111	8		1 01111	4	
Permitted Phases	2	_		6	U	6	8	0		4	-	
Actuated Green, G (s)	_	55.3		55.3	55.3	55.3		15.2			15.2	
Effective Green, q (s)		55.3		55.3	55.3	55.3		15.2			15.2	
Actuated g/C Ratio		0.67		0.67	0.67	0.67		0.18			0.18	
Clearance Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		1107		460	1111	961		238			297	
v/s Ratio Prot		1107		400	0.26	301		230			231	
v/s Ratio Perm		0.40		0.08	0.20	0.00		c0.11			0.01	
v/c Ratio		0.40		0.08	0.39	0.00		0.61			0.01	
Uniform Delay, d1		7.6		5.0	6.2	4.6		31.1			27.9	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		2.4		0.6	1.00	0.0		4.7			0.1	
Delay (s)		10.0		5.6	7.2	4.6		35.8			28.0	
Level of Service		10.0 B		3.0 A	7.Z A	4.0 A		33.0 D			20.0 C	
Approach Delay (s)		10.0		A	7.0	A		35.8			28.0	
Approach LOS		10.0			7.0 A			33.0 D			20.0 C	
••												
Intersection Summary			40.0		0110000							
HCM 2000 Control Delay			12.8	Н	CM 2000	Level of	service		В			
HCM 2000 Volume to Capaci	ty ratio		0.60						40.5			
Actuated Cycle Length (s)			82.8		um of lost				12.3			
Intersection Capacity Utilization	on		78.7%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ની	13	00.1
Traffic Vol., veh/h	16	21	26	61	64	17
Future Vol. veh/h	16	21	26	61	64	17
Conflicting Peds, #/hr	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop			None	-	None
Storage Length	0	-		-		-
Veh in Median Storage		-	_	0	0	_
Grade, %	0			0	0	
Peak Hour Factor	86	86	86	86	86	86
	21	2	4			
Heavy Vehicles, %				9	10	2
Mvmt Flow	19	24	30	71	74	20
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	215	84	94	0	-	0
Stage 1	84	-	-	-	-	-
Stage 2	131					
Critical Hdwy	6.61	6.22	4.14		_	
Critical Hdwy Stg 1	5.61	0.22	7.17			
Critical Hdwy Stg 1	5.61					
	3.689	3.318	0.000			- 1
Follow-up Hdwy				-		- 1
Pot Cap-1 Maneuver	733 894	975	1488		_	
Stage 1		-	-	-	-	-
Stage 2	850	-	-	-	-	
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	718	975	1488	-	-	-
Mov Cap-2 Maneuver	718	-	-	-	-	-
Stage 1	875	-	-	-	-	-
Stage 2	850	-	-	-	-	-
·						
Annuand	EB		NB		SB	
Approach						
HCM Control Delay, s	9.5		2.2		0	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1488	-	844	-	-
HCM Lane V/C Ratio		0.02		0.051		
HCM Control Delay (s)	١	7.5	0	9.5		
HCM Lane LOS	1	7.5 A	A	9.5 A		
HCM 95th %tile Q(veh	Λ	0.1	-	0.2		
HOW 95th Wille Qiven	1)	U. I	-	U.Z	-	-

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1	
Traffic Vol, veh/h	37	11	10	20	25	17
Future Vol, veh/h	37	11	10	20	25	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	71	71	71	71	71	71
Heavy Vehicles, %	3	45	30	2	6	6
Mvmt Flow	52	15	14	28	35	24
Major/Minor	Minor2	ı	/lajor1	N	Major2	
Conflicting Flow All	103	47	59	0	viajoiz -	0
Stage 1	47	41	-	-		-
Stage 2	56				- 1	
Critical Hdwy	6.43	6.65	4.4			
Critical Hdwy Stg 1	5.43	0.05	4.4			
Critical Hdwy Stg 2	5.43	-				
Follow-up Hdwy	3.527		2.47		-	
Pot Cap-1 Maneuver	893	913	1384			
Stage 1	973	-	-			
Stage 2	964					
Platoon blocked, %	304	-			- 1	
Mov Cap-1 Maneuver	884	913	1384			
Mov Cap-1 Maneuver	884	313	1304			
Stage 1	963					
Stage 2	964					
Stage 2	904	-	-		-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		2.5		0	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1384	-	890	- 301	- JDIX
HCM Lane V/C Ratio		0.01		0.076	- 1	
HCM Control Delay (s)		7.6	0	9.4		
HCM Lane LOS		7.0 A	A	9.4 A		
HOM CELL OUT OF THE		Α .	А	Α		

	۶	-	*	•	←	*	1	†	~	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† }		٦	† î>			ર્ન	7	J.	î»	
Traffic Volume (vph)	105	400	43	19	297	51	52	31	23	56	21	88
Future Volume (vph)	105	400	43	19	297	51	52	31	23	56	21	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	0.98			1.00	0.85	1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3267		1658	3243			1692	1483	1658	1534	
Flt Permitted	0.48	1.00		0.48	1.00			0.74	1.00	0.70	1.00	
Satd. Flow (perm)	838	3267		832	3243			1291	1483	1218	1534	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	435	47	21	323	55	57	34	25	61	23	96
RTOR Reduction (vph)	0	6	0	0	11	0	0	0	22	0	85	0
Lane Group Flow (vph)	114	476	0	21	367	0	0	91	3	61	34	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	52.2	46.8		43.8	42.6			8.8	8.8	8.8	8.8	
Effective Green, g (s)	52.2	46.8		43.8	42.6			8.8	8.8	8.8	8.8	
Actuated g/C Ratio	0.71	0.63		0.59	0.58			0.12	0.12	0.12	0.12	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	650	2066		505	1866			153	176	144	182	
v/s Ratio Prot	c0.01	c0.15		0.00	0.11						0.02	
v/s Ratio Perm	0.11			0.02				c0.07	0.00	0.05		
v/c Ratio	0.18	0.23		0.04	0.20			0.59	0.02	0.42	0.19	
Uniform Delay, d1	3.6	5.9		6.2	7.5			30.9	28.8	30.2	29.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.3		0.0	0.2			6.1	0.0	2.0	0.5	
Delay (s)	3.7	6.1		6.3	7.7			37.0	28.8	32.3	29.9	
Level of Service	Α	Α		Α	Α			D	С	С	С	
Approach Delay (s)		5.7			7.7			35.2			30.7	
Approach LOS		Α			Α			D			С	
Intersection Summary												
HCM 2000 Control Delay			12.4	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.29									
Actuated Cycle Length (s)			74.0	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliz	ation		45.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
a Critical Lana Croup												

c Critical Lane Group

0 - 0.2 - -

HCM 95th %tile Q(veh)

2.2

Int Delay, s/veh

	۶	-	\rightarrow	•	←	•	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		Ť	†	7		4			4	
Traffic Volume (vph)	4	553	51	65	801	11	93	8	69	7	3	5
Future Volume (vph)	4	553	51	65	801	11	93	8	69	7	3	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		1.00		1.00	1.00	0.97		0.99			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.99		1.00	1.00	0.85		0.94			0.95	
Flt Protected		1.00		0.95	1.00	1.00		0.97			0.98	
Satd. Flow (prot)		1702		1658	1728	1438		1583			1608	
Flt Permitted		1.00		0.29	1.00	1.00		0.82			0.88	
Satd. Flow (perm)		1695		503	1728	1438		1336			1455	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	4	582	54	68	843	12	98	8	73	7	3	5
RTOR Reduction (vph)	0	4	0	0	0	5	0	28	0	0	4	0
Lane Group Flow (vph)	0	636	0	68	843	7	0	151	0	0	11	0
Confl. Peds. (#/hr)	4		14	14		4	8		1	1		8
Confl. Bikes (#/hr)			2			3			2			2
Heavy Vehicles (%)	2%	3%	2%	2%	3%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Actuated Green, G (s)		43.7		54.0	54.0	54.0		25.0			25.0	
Effective Green, g (s)		43.7		54.0	54.0	54.0		25.0			25.0	
Actuated g/C Ratio		0.48		0.59	0.59	0.59		0.27			0.27	
Clearance Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		811		348	1022	850		365			398	
v/s Ratio Prot				0.01	c0.49							
v/s Ratio Perm		0.38		0.11		0.00		c0.11			0.01	
v/c Ratio		0.78		0.20	0.82	0.01		0.41			0.03	
Uniform Delay, d1		19.9		10.5	14.9	7.7		27.2			24.3	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		7.5		0.3	7.6	0.0		0.8			0.1	
Delay (s)		27.4		10.8	22.4	7.7		27.9			24.4	
Level of Service		С		В	С	Α		С			С	
Approach Delay (s)		27.4			21.4			27.9			24.4	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			24.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	ratio		0.75									
Actuated Cycle Length (s)			91.3	S	um of los	time (s)			18.6			
Intersection Capacity Utilization	1		83.0%		CU Level				Е			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			લી	1₃	
Traffic Vol, veh/h	16	22	36	80	116	30
Future Vol, veh/h	16	22	36	80	116	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0			0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mymt Flow	17	23	38	83	121	31
			00	00		0.
	Minor2		Major1		/lajor2	
Conflicting Flow All	296	137	152	0	-	0
Stage 1	137	-	-	-	-	-
Stage 2	159	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.345	2.227	-	-	-
Pot Cap-1 Maneuver	695	904	1423	-	-	-
Stage 1	890	-	-	-	-	-
Stage 2	870	-	_	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	676	904	1423	-	-	-
Mov Cap-2 Maneuver	676	-	-	-	-	-
Stage 1	865	-	-	-	-	-
Stage 2	870	-	-	-		
Olago 2	0.0					
Approach	EB		NB		SB	
HCM Control Delay, s	9.8		2.4		0	
HCM LOS	Α					
Minor Lane/Major Mvm	.+	NBL	NDT I	EBLn1	SBT	SBR
	ı	1423		792		
Capacity (veh/h)		0.026		0.05	-	-
HCM Carter Dalay (a)		7.6	0	9.8	-	-
HCM Control Delay (s)						
HCM Lane LOS		A	Α	A	-	-
HCM 95th %tile Q(veh))	0.1	-	0.2	-	-

Intersection						
Int Delay, s/veh	3.7					
**						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	Þ	
Traffic Vol, veh/h	52	5	7	22	23	47
Future Vol, veh/h	52	5	7	22	23	47
Conflicting Peds, #/hr	0	0	1	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	10	2	2	2	7	4
Mymt Flow	55	5	7	23	24	50
					4	
	Minor2		Major1		Major2	
Conflicting Flow All	87	50	75	0	-	0
Stage 1	50	-	-	-	-	-
Stage 2	37	-	-	-	-	-
Critical Hdwy	6.5	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.5	-	-	-	-	-
Critical Hdwy Stg 2	5.5	-	-	-	-	-
Follow-up Hdwy	3.59	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	895	1018	1524	-	-	-
Stage 1	952	-	-	-	-	-
Stage 2	965	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	889	1017	1523	-	-	-
Mov Cap-2 Maneuver	889	-	-	-		-
Stage 1	946	-	-	-		-
Stage 2	964	-				-
Olago 2	001					
			ND		0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	9.3		1.8		0	
HCM LOS	Α					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1523	-		-	-
HCM Lane V/C Ratio		0.005		0.067		
HCM Control Delay (s)		7.4	0	9.3	-	
HCM Lane LOS		Α.	A	Α.		
HCM 05th %tile O(veh)		Λ	А	0.2		

	•	-	•	•	←	•	4	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		ሻ	↑ ↑			4	7	ሻ	1>	
Traffic Volume (vph)	84	418	97	31	682	61	139	50	28	46	34	85
Future Volume (vph)	84	418	97	31	682	61	139	50	28	46	34	85
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.97		1.00	0.99			1.00	0.85	1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3222		1658	3275			1683	1483	1658	1558	
Flt Permitted	0.26	1.00		0.44	1.00			0.70	1.00	0.57	1.00	
Satd. Flow (perm)	453	3222		772	3275			1224	1483	991	1558	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	91	454	105	34	741	66	151	54	30	50	37	92
RTOR Reduction (vph)	0	17	0	0	6	0	0	0	23	0	71	0
Lane Group Flow (vph)	91	542	0	34	801	0	0	205	7	50	58	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	46.5	40.3		39.1	36.6			17.6	17.6	17.6	17.6	
Effective Green, g (s)	46.5	40.3		39.1	36.6			17.6	17.6	17.6	17.6	
Actuated g/C Ratio	0.60	0.52		0.50	0.47			0.23	0.23	0.23	0.23	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	367	1673		417	1544			277	336	224	353	
v/s Ratio Prot	c0.02	c0.17		0.00	c0.24						0.04	
v/s Ratio Perm	0.13			0.04				c0.17	0.00	0.05		
v/c Ratio	0.25	0.32		0.08	0.52			0.74	0.02	0.22	0.16	
Uniform Delay, d1	7.4	10.8		9.8	14.3			27.9	23.3	24.4	24.1	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	0.5		0.1	1.2			10.1	0.0	0.5	0.2	
Delay (s)	7.7	11.3		9.8	15.6			38.0	23.3	24.9	24.3	
Level of Service	Α	В		Α	В			D	С	С	С	
Approach Delay (s)		10.8			15.4			36.1			24.5	
Approach LOS		В			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			17.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.56									
Actuated Cycle Length (s)			77.6	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliz	ation		58.8%		U Level o		:		В			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

- 0.2 - -

HCM 95th %tile Q(veh)

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2027 AM (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

	Mov	Dem	and	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
	Class		ows		lows	Satn	Delay	Service	Que		Que	Stop	No. of	Speed
							202					Rate	Cycles	km/h
: Apple	eton	VCIIIII	70	VC11/11	,,,	V/ O	300		VC11	- ''				1011/1
L2	All MCs	52	2.0	52	2.0	0.111	9.0	LOSA	0.4	3.0	0.43	0.59	0.43	45.3
T1	All MCs	8	2.0	8	2.0	0.111	3.5	LOSA	0.4	3.0	0.43	0.59	0.43	45.8
R2	All MCs	51	2.0	51	2.0	0.111	3.8	LOSA	0.4	3.0	0.43	0.59	0.43	45.7
ach		110	2.0	110	2.0	0.111	6.2	LOSA	0.4	3.0	0.43	0.59	0.43	45.5
CR 49)													
L2	All MCs	38	2.0	38	2.0	0.121	7.7	LOSA	0.7	4.7	0.21	0.35	0.21	46.5
T1	All MCs	323	2.0	323	2.0	0.121	2.3	LOSA	0.7	4.8	0.20	0.30	0.20	47.4
R2	All MCs	16	2.0	16	2.0	0.121	2.7	LOSA	0.7	4.8	0.20	0.26	0.20	47.4
ach		378	2.0	378	2.0	0.121	2.8	LOSA	0.7	4.8	0.20	0.30	0.20	47.3
Rams	say													
L2	All MCs	29	2.0	29	2.0	0.059	8.8	LOSA	0.2	1.5	0.40	0.56	0.40	45.3
T1	All MCs	12	2.0	12	2.0	0.059	3.3	LOSA	0.2	1.5	0.40	0.56	0.40	45.9
R2	All MCs	19	2.0	19	2.0	0.059	3.6	LOSA	0.2	1.5	0.40	0.56	0.40	45.7
ach		59	2.0	59	2.0	0.059	6.0	LOSA	0.2	1.5	0.40	0.56	0.40	45.5
Ottaw	/a													
L2	All MCs	9	2.0	9	2.0	0.150	7.8	LOSA	0.8	5.7	0.23	0.29	0.23	46.9
T1	All MCs	414	2.0	414	2.0	0.150	2.3	LOSA	0.8	5.8	0.22	0.28	0.22	47.6
R2	All MCs	44	2.0	44	2.0	0.150	2.7	LOSA	8.0	5.8	0.21	0.28	0.21	47.4
ach		467	2.0	467	2.0	0.150	2.5	LOSA	8.0	5.8	0.22	0.28	0.22	47.5
hicles		1014	20	1014	2 0	0.150	3.2	LOSA	0.8	5.8	0.25	0.34	0.25	47.1
	L2 T1 R2 aach CR 48 L2 T1 R2 aach R2 Aach COttaw L2 T1 R2 aach COttaw L2 T1 R2 aach	EAPPIETON L2 All MCs T1 All MCs R2 All MCs CR 49 L2 All MCs T1 All MCs R2 All MCs R2 All MCs All MCs All MCs All MCs CR All MCs All MCs	CR CR CR CR	Total HV Neh/h %	Total HV Total veh/lh % veh/lh	Total HV Total HV No	Crotal HV Total HV Total HV Veh/h % Ve	Total HV Total HV Sec	CR Form Fo	CR Appleton L2 All MCs 52 2.0 52 2.0 0.111 9.0 LOS A 0.4	CR Appleton L2 All MCs 52 2.0 52 2.0 0.111 9.0 LOS A 0.4 3.0	Crack HV Total HV Web Web	Create HV Total HV Total HV Volume No. Sec Veh Dist Veh No. No.	Cross Composition Compos

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:21 PM
Project: C:Users\MichelleChenlCGH TRANSPORTATION.CGH Working - Documents\Project\scale\Cuser\Project\Project\Project\Project\Project\Project\Project\Proje \Sidra\2022-142 Sidra 2022-11-22.sip9

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2027 PM (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Vehic	le Mo	vement	Perfo	rmai	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South:	Apple	eton													
1	L2	All MCs	74	2.0	74	2.0	0.128	8.9	LOS A	0.5	3.6	0.42	0.59	0.42	45.0
2	T1	All MCs	12	2.0	12	2.0	0.128	3.4	LOS A	0.5	3.6	0.42	0.59	0.42	45.5
3	R2	All MCs	41	2.0	41	2.0	0.128	3.7	LOSA	0.5	3.6	0.42	0.59	0.42	45.4
Approa	ach		128	2.0	128	2.0	0.128	6.7	LOSA	0.5	3.6	0.42	0.59	0.42	45.2
East: 0	CR 49														
4	L2	All MCs	65	2.0	65	2.0	0.240	8.0	LOSA	1.5	10.4	0.30	0.36	0.30	46.3
5	T1	All MCs	619	2.0	619	2.0	0.240	2.4	LOSA	1.5	10.7	0.29	0.32	0.29	47.2
6	R2	All MCs	47	2.0	47	2.0	0.240	2.9	LOSA	1.5	10.7	0.28	0.29	0.28	47.1
Approa	ach		731	2.0	731	2.0	0.240	3.0	LOSA	1.5	10.7	0.29	0.32	0.29	47.1
North:	Rams	say													
7	L2	All MCs	20	2.0	20	2.0	0.062	9.6	LOSA	0.2	1.7	0.51	0.62	0.51	45.2
8	T1	All MCs	15	2.0	15	2.0	0.062	4.2	LOSA	0.2	1.7	0.51	0.62	0.51	45.7
9	R2	All MCs	18	2.0	18	2.0	0.062	4.4	LOSA	0.2	1.7	0.51	0.62	0.51	45.6
Approa	ach		53	2.0	53	2.0	0.062	6.3	LOSA	0.2	1.7	0.51	0.62	0.51	45.5
West:	Ottaw	a													
10	L2	All MCs	18	2.0	18	2.0	0.150	7.9	LOSA	0.8	5.7	0.26	0.31	0.26	46.7
11	T1	All MCs	371	2.0	371	2.0	0.150	2.4	LOSA	0.8	5.8	0.25	0.30	0.25	47.4
12	R2	All MCs	69	2.0	69	2.0	0.150	2.8	LOSA	0.8	5.8	0.24	0.29	0.24	47.3
Approa	ach		458	2.0	458	2.0	0.150	2.7	LOSA	0.8	5.8	0.25	0.30	0.25	47.3
All Veh	nicles		1369	2.0	1369	2.0	0.240	3.3	LOSA	1.5	10.7	0.29	0.35	0.29	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:22 PM
Project: C:UsersWinchelleCheniCGH TRANSPORTATION/CGH Working - Documents \Sidra\2022-142 Sidra 2022-11-22.sip9

Appendix G

2032 Future Background Synchro and Sidra Worksheets

	_	-	•	1	_	_	1	T		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	↑	7		4			4	
Traffic Volume (vph)	1	593	75	58	431	3	89	9	89	2	14	6
Future Volume (vph)	1	593	75	58	431	3	89	9	89	2	14	6
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		1.00		1.00	1.00	0.97		0.99			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.98		1.00	1.00	0.85		0.94			0.96	
Flt Protected		1.00		0.95	1.00	1.00		0.98			1.00	
Satd. Flow (prot)		1658		1625	1664	1440		1516			1659	
Flt Permitted		1.00		0.38	1.00	1.00		0.84			0.97	
Satd. Flow (perm)		1658		646	1664	1440		1299			1618	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	1	638	81	62	463	3	96	10	96	2	15	6
RTOR Reduction (vph)	0	4	0	0	0	1	0	41	0	0	5	0
Lane Group Flow (vph)	0	716	0	62	463	2	0	161	0	0	18	0
Confl. Peds. (#/hr)	4		1	1		4	10		2	2		10
Confl. Bikes (#/hr)			2			2						2
Heavy Vehicles (%)	2%	5%	9%	4%	7%	2%	8%	2%	4%	2%	2%	2%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Actuated Green, G (s)		54.9		54.9	54.9	54.9		15.8			15.8	
Effective Green, g (s)		54.9		54.9	54.9	54.9		15.8			15.8	
Actuated g/C Ratio		0.66		0.66	0.66	0.66		0.19			0.19	
Clearance Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		1096		427	1100	952		247			308	
v/s Ratio Prot					0.28							
v/s Ratio Perm		0.43		0.10		0.00		c0.12			0.01	
v/c Ratio		0.65		0.15	0.42	0.00		0.65			0.06	
Uniform Delay, d1		8.4		5.3	6.6	4.8		31.0			27.5	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		3.0		0.7	1.2	0.0		6.0			0.1	
Delay (s)		11.4		6.0	7.8	4.8		37.1			27.6	
Level of Service		В		Α	Α	Α		D			С	
Approach Delay (s)		11.4			7.5			37.1			27.6	
Approach LOS		В			Α			D			С	
Intersection Summary												
HCM 2000 Control Delay			13.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.65									
Actuated Cycle Length (s)			83.0		um of los				12.3			
Intersection Capacity Utilizatio	n		82.1%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	2.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W/	LDI	TADE	4	1	ODIA
Traffic Vol., veh/h	16	21	26	69	70	17
Future Vol. veh/h	16	21	26	69	70	17
	0	0	20	09	0	0
Conflicting Peds, #/hr	_	_	_	-	-	-
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mvmt Flow	19	24	30	80	81	20
14 1 04	N. 0					
	Minor2		Major1		Major2	
Conflicting Flow All	231	91	101	0	-	0
Stage 1	91	-	-	-	-	-
Stage 2	140	-	-	-	-	-
Critical Hdwy	6.61	6.22	4.14	-	-	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689	3.318	2.236	-	-	-
Pot Cap-1 Maneuver	717	967	1479	-	-	-
Stage 1	887	-	-	-	-	-
Stage 2	842	-	_	-	-	-
Platoon blocked, %	•			-		-
Mov Cap-1 Maneuver	702	967	1479			
Mov Cap-1 Maneuver	702	- 301	1713			
Stage 1	868					
	842					
Stage 2	842	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.6		2		0	
HCM LOS	A		_			
	,,					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1479	-	831	-	-
HCM Lane V/C Ratio		0.02	-	0.052	-	-
HCM Control Delay (s)		7.5	0	9.6	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	0.2	-	
0001 /0010 3(1011	1	0.1		0.2		

	•	-	•	•	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	† 1>			4	7	ሻ	î,	
Traffic Volume (vph)	105	431	43	19	320	51	52	31	23	56	21	88
Future Volume (vph)	105	431	43	19	320	51	52	31	23	56	21	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	0.98			1.00	0.85	1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3270		1658	3248			1692	1483	1658	1534	
Flt Permitted	0.47	1.00		0.46	1.00			0.74	1.00	0.70	1.00	
Satd. Flow (perm)	818	3270		806	3248			1291	1483	1218	1534	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	468	47	21	348	55	57	34	25	61	23	96
RTOR Reduction (vph)	0	5	0	0	10	0	0	0	22	0	85	0
Lane Group Flow (vph)	114	510	0	21	393	0	0	91	3	61	34	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8	1 01111		4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	52.2	46.8		43.8	42.6			8.8	8.8	8.8	8.8	
Effective Green, g (s)	52.2	46.8		43.8	42.6			8.8	8.8	8.8	8.8	
Actuated q/C Ratio	0.71	0.63		0.59	0.58			0.12	0.12	0.12	0.12	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	638	2068		490	1869			153	176	144	182	
v/s Ratio Prot	c0.01	c0.16		0.00	0.12			100			0.02	
v/s Ratio Perm	0.11	00.10		0.02	0.12			c0.07	0.00	0.05	0.02	
v/c Ratio	0.18	0.25		0.04	0.21			0.59	0.02	0.42	0.19	
Uniform Delay, d1	3.6	5.9		6.2	7.6			30.9	28.8	30.2	29.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.3		0.0	0.3			6.1	0.0	2.0	0.5	
Delay (s)	3.7	6.2		6.3	7.8			37.0	28.8	32.3	29.9	
Level of Service	A	A		A	A			D	C	C	C	
Approach Delay (s)		5.8			7.8			35.2	-	-	30.7	
Approach LOS		Α			Α			D			С	
Intersection Summary												
HCM 2000 Control Delay			12.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.31									
Actuated Cycle Length (s)			74.0	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliz	ation		45.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

- 0.3 - -

HCM 95th %tile Q(veh)

Int Delay, s/veh

Movement

Lane Configurations

Traffic Vol, veh/h

Future Vol, veh/h

Sign Control RT Channelized

Storage Length

Conflicting Peds, #/hr

136

30

89

16 22 36 89 126

0 0

Stop Stop Free Free Free Free - None - None - None

0 - - - - -

0

Veh in Median Storage, # 0 - - 0 0 -

	۶	\rightarrow	*	1	—	*	1	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44		*	1	7		4			4	
Traffic Volume (vph)	4	596	55	70	863	11	100	8	74	7	3	5
Future Volume (vph)	4	596	55	70	863	11	100	8	74	7	3	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		1.00		1.00	1.00	0.97		0.99			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.99		1.00	1.00	0.85		0.94			0.95	
Flt Protected		1.00		0.95	1.00	1.00		0.97			0.98	
Satd. Flow (prot)		1702		1658	1728	1438		1583			1608	
Flt Permitted		1.00		0.27	1.00	1.00		0.82			0.88	
Satd. Flow (perm)		1695		467	1728	1438		1335			1450	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	4	627	58	74	908	12	105	8	78	7	3	5
RTOR Reduction (vph)	0	4	0	0	0	5	0	28	0	0	4	0
Lane Group Flow (vph)	0	685	0	74	908	7	0	163	0	0	11	0
Confl. Peds. (#/hr)	4	000	14	14	300	4	8	100	1	1	- ''	8
Confl. Bikes (#/hr)	- 7		2	17		3	U		2			2
Heavy Vehicles (%)	2%	3%	2%	2%	3%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA	2 /0		NA	Perm	Perm	NA	2/0	Perm	NA	2 /0
Protected Phases	Pellii	NA 2		pm+pt 1	NA 6	Pellii	Perm	NA 8		Pellii	INA 4	
Permitted Phases	2	2		6	0	6	8	0		4	4	
Actuated Green, G (s)		43.7		54.0	54.0	54.0	0	25.0		4	25.0	
		43.7		54.0	54.0	54.0		25.0			25.0	
Effective Green, g (s) Actuated g/C Ratio		0.48		0.59	0.59	0.59		0.27			0.27	
		6.3		6.3	6.3	6.3		6.0			6.0	
Clearance Time (s)												
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		811		328	1022	850		365			397	
v/s Ratio Prot				0.01	c0.53							
v/s Ratio Perm		0.40		0.12		0.00		c0.12			0.01	
v/c Ratio		0.85		0.23	0.89	0.01		0.45			0.03	
Uniform Delay, d1		20.8		10.9	16.1	7.7		27.4			24.3	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		10.5		0.4	11.4	0.0		0.9			0.1	
Delay (s)		31.4		11.2	27.5	7.7		28.3			24.4	
Level of Service		С		В	С	Α		С			С	
Approach Delay (s)		31.4			26.0			28.3			24.4	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			28.2	Н	CM 2000	Level of S	Service		С			_
HCM 2000 Volume to Capacity	y ratio		0.81									
Actuated Cycle Length (s)			91.3	S	um of los	t time (s)			18.6			
Intersection Capacity Utilization	n		87.3%	IC	CU Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

ron in modian otorag	0, 11			•	•	
Grade, %	0	-	-	0	0	
Peak Hour Factor	96	96	96	96	96	
Heavy Vehicles, %	2	5	3	7	12	
Mvmt Flow	17	23	38	93	131	
Major/Minor	Minor2		Major1	٨	Major2	
Conflicting Flow All	316			0	-	
Stage 1	147		-	-	-	
Stage 2	169		-			
Critical Hdwy	6.42		4.13			
Critical Hdwy Stg 1	5.42	-	-	-		-
Critical Hdwy Stg 2	5.42	_	_	-	-	
Follow-up Hdwy		3.345	2.227			
Pot Cap-1 Maneuver	677		1411	-	-	-
Stage 1	880	-	-			-
Stage 2	861	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	658	892	1411	-	-	-
Mov Cap-2 Maneuver	658	-	-	-	-	-
Stage 1	855	-	-	-	-	-
Stage 2	861	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			2.2		0	
HCM LOS	9.9 A		2.2		U	
TIOM EGO	- /					
Minor Lane/Major Mvr	mt	NBL	NBT E		SBT	SBR
Capacity (veh/h)		1411	-		-	-
HCM Lane V/C Ratio		0.027		0.051	-	-
	6)	7.6	0	9.9	-	-
HCM Control Delay (s	,					-
HCM Lane LOS HCM 95th %tile Q(vel	,	0.1	Α -	0.2	-	

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LDIN	NUL	4	\$	ODIN
Traffic Vol, veh/h	52	5	7	34	32	47
Future Vol. veh/h	52	5	7	34	32	47
Conflicting Peds, #/hr	0	0	1	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -		-		-	None
Storage Length	0	-	- :	-	- 1	-
Veh in Median Storage	-			0	0	
Grade. %	, # 0			0	0	
Peak Hour Factor	94	94	94	94	94	94
	10	2	2	2	7	4
Heavy Vehicles, %	55	5	7		34	50
Mvmt Flow	55	5	1	36	54	50
	Minor2		Major1	N	Major2	
Conflicting Flow All	110	60	85	0	-	0
Stage 1	60	-	-	-	-	-
Stage 2	50	-	-	-	-	-
Critical Hdwy	6.5	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.5	-	-	-	-	-
Critical Hdwy Stg 2	5.5	-	-	-	-	-
Follow-up Hdwy	3.59	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	868	1005	1512	-	-	-
Stage 1	943	-	-	-	-	-
Stage 2	952	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	862	1004	1511	-	-	-
Mov Cap-2 Maneuver	862	-	-	-		-
Stage 1	937	-	-	-	-	-
Stage 2	951					
Olago 2	001					
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		1.3		0	
HCM LOS	Α					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1511	-	873	-	-
HCM Lane V/C Ratio		0.005		0.069		
HCM Control Delay (s)		7.4	0	9.4	-	
HCM Lane LOS		A	A	A		
HOM CELL OUT OF LA		^	^	^ ^		

	*	→	*	•	—	•	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		7	↑ î>			ની	7	Ť	- 1}	
Traffic Volume (vph)	84	450	97	31	735	61	139	50	28	46	34	85
Future Volume (vph)	84	450	97	31	735	61	139	50	28	46	34	85
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.97		1.00	0.99			1.00	0.85	1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3228		1658	3278			1683	1483	1658	1558	
Flt Permitted	0.23	1.00		0.43	1.00			0.70	1.00	0.57	1.00	
Satd. Flow (perm)	410	3228		746	3278			1224	1483	992	1558	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	91	489	105	34	799	66	151	54	30	50	37	92
RTOR Reduction (vph)	0	15	0	0	6	0	0	0	23	0	71	0
Lane Group Flow (vph)	91	579	0	34	859	0	0	205	7	50	58	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	46.5	40.3		39.1	36.6			17.7	17.7	17.7	17.7	
Effective Green, g (s)	46.5	40.3		39.1	36.6			17.7	17.7	17.7	17.7	
Actuated g/C Ratio	0.60	0.52		0.50	0.47			0.23	0.23	0.23	0.23	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	344	1674		404	1544			278	337	225	354	
v/s Ratio Prot	c0.02	c0.18		0.00	c0.26						0.04	
v/s Ratio Perm	0.14			0.04				c0.17	0.00	0.05		
v/c Ratio	0.26	0.35		0.08	0.56			0.74	0.02	0.22	0.16	
Uniform Delay, d1	7.6	11.0		9.8	14.7			27.8	23.3	24.4	24.1	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	0.6		0.1	1.5			9.8	0.0	0.5	0.2	
Delay (s)	8.0	11.5		9.9	16.2			37.6	23.3	24.9	24.3	
Level of Service	Α	В		Α	В			D	С	С	С	
Approach Delay (s)		11.1			15.9			35.8			24.5	
Approach LOS		В			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			17.4	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.58									
Actuated Cycle Length (s)			77.7	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliz	ation		60.3%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

0 - 0.2 - -

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2032 AM (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Mov Turn Mov		Mov	Demand		Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
		Class					Satn	Delay	Service	Qu		Que	Stop		Speed
			[Total							[Veh.	Dist]		Rate	Cycles	
0		. 4	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
	: Apple														
1	L2	All MCs		2.0	56	2.0	0.123	9.1	LOS A	0.5	3.4	0.45	0.60	0.45	45.2
2	T1	All MCs	8	2.0	8	2.0	0.123	3.6	LOSA	0.5	3.4	0.45	0.60	0.45	45.8
3	R2	All MCs	55	2.0	55	2.0	0.123	3.9	LOSA	0.5	3.4	0.45	0.60	0.45	45.6
Appro	ach		119	2.0	119	2.0	0.123	6.3	LOS A	0.5	3.4	0.45	0.60	0.45	45.4
East:	CR 49)													
4	L2	All MCs	42	2.0	42	2.0	0.131	7.8	LOS A	0.7	5.2	0.22	0.35	0.22	46.4
5	T1	All MCs	348	2.0	348	2.0	0.131	2.3	LOS A	0.7	5.3	0.22	0.30	0.22	47.4
6	R2	All MCs	16	2.0	16	2.0	0.131	2.7	LOSA	0.7	5.3	0.21	0.27	0.21	47.4
Appro	ach		407	2.0	407	2.0	0.131	2.9	LOSA	0.7	5.3	0.22	0.30	0.22	47.3
North:	Ram	say													
7	L2	All MCs	29	2.0	29	2.0	0.060	8.9	LOS A	0.2	1.6	0.41	0.57	0.41	45.3
8	T1	All MCs	12	2.0	12	2.0	0.060	3.4	LOS A	0.2	1.6	0.41	0.57	0.41	45.8
9	R2	All MCs	19	2.0	19	2.0	0.060	3.7	LOSA	0.2	1.6	0.41	0.57	0.41	45.6
Appro	ach		59	2.0	59	2.0	0.060	6.1	LOS A	0.2	1.6	0.41	0.57	0.41	45.5
West:	Ottaw	⁄a													
10	L2	All MCs	9	2.0	9	2.0	0.162	7.8	LOS A	0.9	6.2	0.23	0.29	0.23	46.9
11	T1	All MCs	446	2.0	446	2.0	0.162	2.3	LOS A	0.9	6.3	0.22	0.28	0.22	47.5
12	R2	All MCs	47	2.0	47	2.0	0.162	2.8	LOSA	0.9	6.3	0.22	0.28	0.22	47.4
Appro	ach		502	2.0	502	2.0	0.162	2.5	LOSA	0.9	6.3	0.22	0.28	0.22	47.5
	hicles		1087		1087		0.162	3.2	LOSA	0.9	6.3	0.26	0.34	0.26	47.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:22 PM
Project: C:Users\MichelleChen\CGH TRANSPORTATION.CGH Working - Documents\Project\scale\CQU22-7 project\scale\CQU22-7 ale 4 Houchaimi \Mill \Valley Estates\DATA \Sidra\2022-142 Sidra 2022-11-22.sip9

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FB2032 PM (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Mov ID	Turn	Mov Class		nand lows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% B Qu	ack Of	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		0.000	[Total	HV]	[Total	HV]				[Veh.	Dist]	440	Rate	Cycles	
South:	Apple	eton	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
1		All MCs	80	2.0	80	2.0	0.140	9.0	LOSA	0.6	3.9	0.44	0.60	0.44	45.0
2	T1	All MCs	12	2.0	12	2.0	0.140	3.5	LOS A	0.6	3.9	0.44	0.60	0.44	45.5
3	R2	All MCs	44	2.0	44	2.0	0.140	3.8	LOSA	0.6	3.9	0.44	0.60	0.44	45.3
Appro	ach		137	2.0	137	2.0	0.140	6.8	LOS A	0.6	3.9	0.44	0.60	0.44	45.1
East: (CR 49														
4	L2	All MCs	70	2.0	70	2.0	0.259	8.0	LOS A	1.6	11.4	0.31	0.36	0.31	46.2
5	T1	All MCs	666	2.0	666	2.0	0.259	2.5	LOS A	1.7	11.8	0.30	0.32	0.30	47.1
6	R2	All MCs	47	2.0	47	2.0	0.259	2.9	LOS A	1.7	11.8	0.29	0.29	0.29	47.1
Appro	ach		784	2.0	784	2.0	0.259	3.0	LOSA	1.7	11.8	0.30	0.32	0.30	47.0
North:	Rams	say													
7	L2	All MCs	20	2.0	20	2.0	0.064	9.8	LOSA	0.2	1.7	0.53	0.64	0.53	45.1
8	T1	All MCs	15	2.0	15	2.0	0.064	4.3	LOSA	0.2	1.7	0.53	0.64	0.53	45.7
9	R2	All MCs	18	2.0	18	2.0	0.064	4.6	LOSA	0.2	1.7	0.53	0.64	0.53	45.5
Appro	ach		53	2.0	53	2.0	0.064	6.4	LOS A	0.2	1.7	0.53	0.64	0.53	45.4
West:	Ottaw	a													
10	L2	All MCs	18	2.0	18	2.0	0.162	7.9	LOSA	0.9	6.2	0.27	0.32	0.27	46.7
11	T1	All MCs	399	2.0	399	2.0	0.162	2.4	LOSA	0.9	6.3	0.26	0.31	0.26	47.4
12	R2	All MCs	74	2.0	74	2.0	0.162	2.8	LOS A	0.9	6.3	0.25	0.30	0.25	47.2
Appro	ach		491	2.0	491	2.0	0.162	2.7	LOSA	0.9	6.3	0.26	0.31	0.26	47.3
	nicles		1464		1464		0.259	3.4	LOSA	1.7	11.8	0.31	0.35	0.31	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:23 PM
Project: C:UsersWinchelleCheniCGH TRANSPORTATION/CGH Working - Documents \Sidra\2022-142 Sidra 2022-11-22.sip9

Appendix H

2027 Future Total Synchro and Sidra Worksheets

Apploacificou	ь	А	D	O
Intersection Summary				
HCM 2000 Control Delay	17.1	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.70			
Actuated Cycle Length (s)	84.5	Sum of lost time (s)	12.3	
Intersection Capacity Utilization	83.6%	ICU Level of Service	Е	
Analysis Period (min)	15			
c Critical Lane Group				

late are effect						
Intersection	4.0					
Int Delay, s/veh	1.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			લી	ĵ,	
Traffic Vol, veh/h	16	21	26	147	92	17
Future Vol., veh/h	16	21	26	147	92	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-		-
Veh in Median Storage		-	-	0	0	
Grade. %	0			0	0	
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mymt Flow	19	24	30	171	107	20
N.A. 1. (N.A.)						
	Minor2		Major1		Major2	
Conflicting Flow All	348	117	127	0	Major2 -	0
Conflicting Flow All Stage 1	348 117					0 -
Conflicting Flow All Stage 1 Stage 2	348 117 231	117 - -	127 - -	0	-	
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	348 117 231 6.61	117 -	127	0 -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1	348 117 231 6.61 5.61	117 - -	127 - -	0 - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	348 117 231 6.61	117 - - 6.22	127 - -	0 - -	-	
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1	348 117 231 6.61 5.61 5.61	117 - - 6.22 -	127 - - 4.14 -	0 - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2	348 117 231 6.61 5.61 5.61	117 - - 6.22 -	127 - - 4.14 -	0 - - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy	348 117 231 6.61 5.61 5.61 3.689	117 - - 6.22 - - 3.318	127 - - 4.14 - - 2.236	- - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver	348 117 231 6.61 5.61 5.61 3.689 612	117 - 6.22 - - 3.318 935	127 - - 4.14 - - 2.236	- - - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1	348 117 231 6.61 5.61 5.61 3.689 612 863	117 - - 6.22 - - 3.318 935	127 - - 4.14 - - 2.236 1447	0 - - - - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Sritical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2	348 117 231 6.61 5.61 5.61 3.689 612 863	117 - - 6.22 - - 3.318 935	127 - - 4.14 - - 2.236 1447	0 - - - - - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Pot 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	348 117 231 6.61 5.61 5.61 3.689 612 863 765	117 - 6.22 - - 3.318 935 -	127 - 4.14 - - 2.236 1447 -	0 - - - - - - - -	-	
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %	348 117 231 6.61 5.61 5.61 3.689 612 863 765	117 - 6.22 - 3.318 935 - 935	127 - 4.14 - 2.236 1447 - 1447	0 - - - - - - - - -	-	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	348 117 231 6.61 5.61 5.61 3.689 612 863 765 598	117 - 6.22 - 3.318 935 - 935	127 - 4.14 - 2.236 1447 - 1447	0 - - - - - - - - - - -	-	
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	348 117 231 6.61 5.61 5.61 3.689 612 863 765 598 598 843	117 - 6.22 - 3.318 935 - 935 -	127 - - 4.14 - 2.236 1447 - - 1447		-	

Minor Lane/Maior Mymt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	1447	-	752	-	-
HCM Lane V/C Ratio	0.021	-	0.057	-	-
HCM Control Delay (s)	7.5	0	10.1	-	-
HCM Lane LOS	Α	Α	В	-	-
HCM 95th %tile O(veh)	0.1		0.2		-

1.1

HCM Control Delay, s 10.1

HCM LOS

4: Paterson Street & Jack Dalgity Street/Access #1

Minor Lane/Major Mvmt	NBL	NBT	NRR	NRR FRI n1WRI n1		SBL	SBT	SBR	
minor Eurominajor minit						000	<u> </u>	05.1	
Capacity (veh/h)	1384	-	-	768	990	1580	-	-	
HCM Lane V/C Ratio	0.01	-	-	0.088	0.071	0.012	-	-	
HCM Control Delay (s)	7.6	0	-	10.1	8.9	7.3	0	-	
HCM Lane LOS	Α	Α	-	В	Α	Α	Α	-	
HCM 95th %tile Q(veh)	0	-	-	0.3	0.2	0	-		

SB

1.8

Interpolice						
Intersection	3.7					
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			ન	ĵ»	
Traffic Vol, veh/h	86	22	7	87	85	28
Future Vol, veh/h	86	22	7	87	85	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0			0	0	
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	92	24	8	94	91	30
	02		•	0.	0.	00
	Minor2		Major1		Major2	
Conflicting Flow All	216	106	121	0	-	0
Stage 1	106	-	-	-	-	-
Stage 2	110	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	772	948	1467	-	-	-
Stage 1	918	-	-	-	-	-
Stage 2	915	-	-	-	-	_
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	767	948	1467	-	_	-
Mov Cap-2 Maneuver	767	-	-	-	-	-
Stage 1	912	_	-	-	_	_
Stage 2	915			-		
Olago 2	0.0					
Approach	EB		NB		SB	
HCM Control Delay, s	10.3		0.6		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
	IIL	1467	IND I	798	<u> </u>	ODK -
Capacity (veh/h)		0.005				
HCM Cantrol Dalay (a	\			0.146	-	-
HCM Control Delay (s)	7.5	0	10.3	-	-
HCM Lane LOS		A	Α	В	-	-

EB

В

10.1

HCM Control Delay, s

HCM LOS

WB

8.9

Α

0 - 0.5 - -

Lane Configurations 1		•	→	•	•	←	•	4	†	1	-	Ţ	1
Traffic Volume (vph)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph) 105 404 54 23 308 51 84 31 34 56 21	Lane Configurations	ሻ	↑ ↑		ሻ	۴ß			ની	7	7	1>	
Ideal Flow (vphpt)			404										88
Total Lost time (s)	Future Volume (vph)	105	404	54	23	308	51	84	31	34	56	21	88
Lane Util. Factor 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Ideal Flow (vphpl)			1800	1800		1800	1800	1800	1800			1800
Fit Protected		5.0			5.0								
Fit Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.96 1.00 0.95 1.00 Satd. Flow (prot) 1658 3257 1658 3246 1684 1483 1658 1534 1534 1616 Proteinted 0.49 1.00 0.47 1.00 0.71 1.00 0.68 1.00 Satd. Flow (perm) 849 3257 819 3246 1239 1483 1181 1534 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92													
Satd. Flow (prot) 1658 3257 1658 3246 1684 1483 1658 1534 FIF Permitted 0.49 1.00 0.47 1.00 0.71 1.00 0.68 1.00 Satd. Flow (perm) 849 3257 819 3246 1239 1483 1181 1534 Peak-hour factor, PHF 0.92 0.													
Fit Permitted													
Satic Flow (perm) 849 3257 819 3246 1239 1483 1181 1534 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 Adj. Flow (vph)													
Peak-hour factor, PHF 0.92 0.162 0.02 0.82 2 6 8 8 8 8 8 8 4 7 8 9 9 10.5 10.5 <t< td=""><td>Flt Permitted</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Flt Permitted												
Adj. Flow (vph)	Satd. Flow (perm)	849	3257		819	3246						1534	
RTOR Reduction (vph)	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph) 114 490 0 25 379 0 0 125 5 61 36 Turn Type pm+pt NA pm+pt NA Perm NA Perm NA Protected Phases 5 2 1 6 8 4 Permitted Phases 2 6 8 8 4 Actuated Green, G (s) 50.3 44.9 44.3 41.9 10.5	Adj. Flow (vph)	114	439	59	25	335	55	91	34	37	61	23	96
Turn Type	RTOR Reduction (vph)	0	8	0	0	11	0	0	0	32	0	83	0
Protected Phases 5 2 1 6 8 8 4 4 Permitted Phases 2 6 8 8 8 4 Actuated Green, G (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 Effective Green, g (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 Effective Green, g (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 Actuated g/C Ratio 0.67 0.60 0.59 0.56 0.14 0.14 0.14 0.14 0.14 Clearance Time (s) 5.0 6.2 5.0 6.2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Lane Group Flow (vph)	114	490	0	25	379	0	0	125	5	61	36	0
Permitted Phases 2 6 8 8 8 4 Actuated Green, G (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 Effective Green, g (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 Actuated g/C Ratio 0.67 0.60 0.59 0.56 0.14 0.14 0.14 0.14 0.14 Clearance Time (s) 5.0 6.2 5.0 6.2 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Actuated Green, G (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 Effective Green, g (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	Protected Phases	5	2		1	6			8			4	
Effective Green, g (s) 50.3 44.9 44.3 41.9 10.5 10.5 10.5 10.5 Actuated g/C Ratio 0.67 0.60 0.59 0.56 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	Permitted Phases	2			6			8		8	4		
Actuated g/C Ratio 0.67 0.60 0.59 0.56 0.14 0.14 0.14 0.14 0.14 Clearance Time (s) 5.0 6.2 5.0 6.2 6.0 6.0 6.0 6.0 6.0 Chychicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Actuated Green, G (s)	50.3	44.9		44.3	41.9			10.5	10.5	10.5	10.5	
Clearance Time (s) 5.0 6.2 5.0 6.2 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.0 <	Effective Green, g (s)	50.3	44.9		44.3	41.9			10.5	10.5	10.5	10.5	
Vehicle Extension (s) 3.0	Actuated g/C Ratio	0.67	0.60		0.59	0.56			0.14	0.14	0.14	0.14	
Lane Grp Cap (vph) 627 1949 510 1813 173 207 165 214 v/s Ratio Prot c0.01 c0.15 0.00 0.12 0.02 v/s Ratio Prot c0.01 c0.15 0.00 0.12 0.00 0.05 v/s Ratio Prot 0.11 0.03 c0.10 0.00 0.05 v/s Ratio Prot 0.11 0.03 c0.10 0.00 0.05 v/s Ratio Progression Factor 0.18 0.25 0.05 0.21 0.72 0.03 0.37 0.17 Uniform Delay, d1 4.4 7.1 6.4 8.3 30.9 27.8 29.2 28.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
v/s Ratio Prot c0.01 c0.15 0.00 0.12 0.02 v/s Ratio Perm 0.11 0.03 c0.10 0.00 0.05 v/c Ratio 0.18 0.25 0.05 0.21 0.72 0.03 0.37 0.17 Uniform Delay, d1 4.4 7.1 6.4 8.3 30.9 27.8 29.2 28.4 Progression Factor 1.00	Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
v/s Ratio Perm 0.11 0.03 c0.10 0.00 0.05 v/c Ratio 0.18 0.25 0.05 0.21 0.72 0.03 0.37 0.17 Uniform Delay, d1 4.4 7.1 6.4 8.3 30.9 27.8 29.2 28.4 Progression Factor 1.00	Lane Grp Cap (vph)	627	1949		510	1813			173	207	165	214	
v/c Ratio 0.18 0.25 0.05 0.21 0.72 0.03 0.37 0.17 Uniform Delay, d1 4.4 7.1 6.4 8.3 30.9 27.8 29.2 28.4 Progression Factor 1.00 2.88 1.20 2.88 1.20 2.94 2.94 <td< td=""><td>v/s Ratio Prot</td><td>c0.01</td><td>c0.15</td><td></td><td>0.00</td><td>0.12</td><td></td><td></td><td></td><td></td><td></td><td>0.02</td><td></td></td<>	v/s Ratio Prot	c0.01	c0.15		0.00	0.12						0.02	
Uniform Delay, d1 4.4 7.1 6.4 8.3 30.9 27.8 29.2 28.4 Progression Factor 1.00 2.88 8.8 8.8 4.4 40.9 29.4 4.4 Approach LOS A A A D C C Intersection Summary 1.00 1.00 1.00 1.00	v/s Ratio Perm	0.11			0.03				c0.10	0.00	0.05		
Progression Factor 1.00 2.88 2.88 2.88 1.00 <td>v/c Ratio</td> <td>0.18</td> <td>0.25</td> <td></td> <td>0.05</td> <td>0.21</td> <td></td> <td></td> <td>0.72</td> <td>0.03</td> <td>0.37</td> <td>0.17</td> <td></td>	v/c Ratio	0.18	0.25		0.05	0.21			0.72	0.03	0.37	0.17	
Incremental Delay, d2	Uniform Delay, d1	4.4	7.1		6.4	8.3			30.9	27.8	29.2	28.4	
Delay (s) 4.6 7.4 6.4 8.5 44.7 27.9 30.6 28.8 Level of Service A A A A D C C C Approach Delay (s) 6.9 8.4 40.9 29.4 Approach LOS C C Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 75.0 Sum of lost time (s) 17.2 Intersection Capacity Utilization 45.4% ICU Level of Service A	Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Level of Service A A A A A C C C Approach Delay (s) 6.9 8.4 40.9 29.4 Approach LOS A A D C Intersection Summary Intersection Summary B HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 75.0 Sum of lost time (s) 17.2 Intersection Capacity Utilization 45.4% ICU Level of Service A	Incremental Delay, d2	0.1	0.3		0.0	0.3			13.9	0.0	1.4	0.4	
Approach Delay (s) 6.9 8.4 40.9 29.4 Approach LOS A A D C Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HHM HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 75.0 Sum of lost time (s) 17.2 Intersection Capacity Utilization 45.4% ICU Level of Service A	Delay (s)	4.6	7.4		6.4	8.5			44.7	27.9	30.6	28.8	
Approach LOS A A D C Intersection Summary Intersection Summary <t< td=""><td>Level of Service</td><td>Α</td><td></td><td></td><td>Α</td><td>Α</td><td></td><td></td><td>D</td><td>С</td><td>С</td><td>С</td><td></td></t<>	Level of Service	Α			Α	Α			D	С	С	С	
Hersection Summary	Approach Delay (s)		6.9			8.4			40.9			29.4	
HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 75.0 Sum of lost time (s) 17.2 Intersection Capacity Utilization 45.4% ICU Level of Service A	Approach LOS		Α			Α			D			С	
HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 75.0 Sum of lost time (s) 17.2 Intersection Capacity Utilization 45.4% ICU Level of Service A	Intersection Summary												
Actuated Cycle Length (s) 75.0 Sum of lost time (s) 17.2 Intersection Capacity Utilization 45.4% ICU Level of Service A	HCM 2000 Control Delay			14.3	Н	CM 2000	Level of	Service		В			
Intersection Capacity Utilization 45.4% ICU Level of Service A		acity ratio											
	Actuated Cycle Length (s)			75.0	S	um of lost	time (s)			17.2			
Analysis Period (min) 15	Intersection Capacity Utiliz	ation			IC	CU Level	of Service			Α			
	Analysis Period (min)			15									

2: Paterson Street/Menzie Street & Ottawa Street												
	۶	-	*	•	—	4	4	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	†	7		4			4	
Traffic Volume (vph)	4	601	111	65	829	11	128	8	69	7	3	5
Future Volume (vph)	4	601	111	65	829	11	128	8	69	7	3	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		0.99		1.00	1.00	0.97		1.00			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.98		1.00	1.00	0.85		0.95			0.95	
Flt Protected		1.00		0.95	1.00	1.00		0.97			0.98	
Satd. Flow (prot)		1680		1658	1728	1438		1593			1608	
Flt Permitted		1.00		0.24	1.00	1.00		0.80			0.88	
Satd. Flow (perm)		1674		423	1728	1438		1316			1441	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	4	633	117	68	873	12	135	8	73	7	3	5
RTOR Reduction (vph)	0	7	0	0	0	5	0	20	0	0	4	0
Lane Group Flow (vph)	0	747	0	68	873	7	0	196	0	0	11	0
Confl. Peds. (#/hr)	4		14	14		4	8		1	1		8
Confl. Bikes (#/hr)			2			3			2			2
Heavy Vehicles (%)	2%	3%	2%	2%	3%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Actuated Green, G (s)		43.7		54.0	54.0	54.0		25.0			25.0	
Effective Green, g (s)		43.7		54.0	54.0	54.0		25.0			25.0	
Actuated g/C Ratio		0.48		0.59	0.59	0.59		0.27			0.27	
Clearance Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		801		304	1022	850		360			394	
v/s Ratio Prot				0.01	c0.51							
v/s Ratio Perm		c0.45		0.12		0.00		c0.15			0.01	
v/c Ratio		0.93		0.22	0.85	0.01		0.54			0.03	
Uniform Delay, d1		22.4		11.2	15.4	7.7		28.3			24.3	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		19.0		0.4	9.1	0.0		1.7			0.1	
Delay (s)		41.4		11.6	24.5	7.7		30.0			24.4	
Level of Service		D		В	С	Α		С			С	
Approach Delay (s)		41.4			23.3			30.0			24.4	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			31.1	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	ty ratio		0.84									
Actuated Cycle Length (s)			91.3	S	um of lost	t time (s)			18.6			
Intersection Capacity Utilization			85.8%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	î,	
Traffic Vol, veh/h	16	22	36	136	212	30
Future Vol, veh/h	16	22	36	136	212	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mvmt Flow	17	23	38	142	221	31
Major/Minor I	Minor2	N	/lajor1	N	Major2	
Conflicting Flow All	455	237	252	0	-	0

Major/Minor	Minor2		Major1	Ma	ajor2	
Conflicting Flow All	455	237	252	0	-	0
Stage 1	237	-	-	-	-	-
Stage 2	218	-	-	-	-	-
Critical Hdwy	6.42	6.25	4.13	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.345	2.227	-	-	-
Pot Cap-1 Maneuver	563	795	1307	-	-	-
Stage 1	802	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	545	795	1307	-	-	-
Mov Cap-2 Maneuver	545	-	-	-	-	-
Stage 1	776	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			1.6		0	
HCM LOS	10.7 B		1.0		U	
TIGWI LOG	ь					

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	1307	-	666	-	-
HCM Lane V/C Ratio	0.029	-	0.059	-	-
HCM Control Delay (s)	7.8	0	10.7	-	-
HCM Lane LOS	Α	Α	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.2	-	-

latana atian												
Intersection												
Int Delay, s/veh	5.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Vol, veh/h	52	0	5	7	0	35	7	22	12	60	23	47
Future Vol, veh/h	52	0	5	7	0	35	7	22	12	60	23	47
Conflicting Peds, #/hr	0	0	0	0	0	0	1	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	93	94	93	93	93	94	94	93	93	94	94
Heavy Vehicles, %	10	2	2	2	2	2	2	2	2	2	7	4
Mvmt Flow	55	0	5	8	0	38	7	23	13	65	24	50
Mojor/Minor A	linor?			Minor1			Major1			Major?		
	Minor2	220			240			0		Major2	^	0
Conflicting Flow All	243	230	50	226 44	249 44	30	75	0	0	36	0	0
Stage 1	180	180		182								
Stage 2	63 7.2	50	- 00		205	- 00	4.12	-	-	4.40	-	-
Critical Hdwy		6.52	6.22	7.12 6.12	6.52 5.52	6.22	4.12	-	-	4.12		-
Critical Hdwy Stg 1	6.2	5.52	-	6.12	5.52	-	-	-	-	-		-
Critical Hdwy Stg 2			- 0.040			- 0.40	- 0.40	-	-	- 0.40	-	-
Follow-up Hdwy	3.59	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	695	670	1018	729	654	1044	1524	-	-	1575	-	-
Stage 1	803	750	-	970	858	-	-	-	-	-	-	-
Stage 2	928	853	-	820	732	-	-	-	-	-	-	-
Platoon blocked, %	CAE	007	4047	000	000	4044	4500	-	-	4575	-	-
Mov Cap-1 Maneuver	645	637	1017	698	622	1044	1523	-	-	1575	-	-
Mov Cap-2 Maneuver	645	637	-	698	622	-	-	-	-	-	-	-
Stage 1	798	717	-	965	854	-	-	-	-	-	-	-
Stage 2	890	849	-	781	700	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.9			8.9			1.3			3.4		
HCM LOS	В			А								
Minor Lane/Major Mvmt		NBL	NBT	NRR	EBLn1\	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1523	-	-	666	964	1575	-	-			
HCM Lane V/C Ratio		0.005		- 1	0.091	0.047	0.041					
HCM Control Delay (s)		7.4	0		10.9	8.9	7.4	0				
HCM Lane LOS		7.4 A	A		10.3	Ο.9	7.4 A	A	- 0			
HOM CALL CALL		A	А		0.0	Α.	A .	٨				

0 - - 0.3 0.1 0.1 -

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ર્ન	ĥ	
Traffic Vol, veh/h	56	14	24	116	138	96
Future Vol, veh/h	56	14	24	116	138	96
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		_	None	-	None
Storage Length	0	-	-	-		-
Veh in Median Storage	e.# 0	-	_	0	0	_
Grade. %	0			-	0	
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	15	26	125	148	103
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	377	200	251	0	-	0
Stage 1	200	200	231	-		-
Stage 2	177		- 1	- 1	- 1	
	6.42		4.12	-	-	
Critical Hdwy		6.22				_
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	625	841	1314	-	-	-
Stage 1	834	-	-	-	-	-
Stage 2	854	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	612	841	1314	-	-	-
Mov Cap-2 Maneuver	612	-	-		-	-
Stage 1	816	-	_	-		_
Stage 2	854			-		
Olage 2	004					
Approach	EB		NB		SB	
HCM Control Delay, s	11.3		1.3		0	
HCM LOS	В					
	_					
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1314	-	647	-	-
HCM Lane V/C Ratio		0.02	-	0.116	-	-
HCM Control Delay (s))	7.8	0	11.3	-	-
HCM Lane LOS		A	A			
HCM 95th %tile Q(veh)	0.1	-			
TION JOHI JOHIE Q(VEI)	1	0.1		0.4		

	*	-	*	•	—	4	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ }		7	↑ î>			ની	7	Ť	- 1}	
Traffic Volume (vph)	84	430	133	43	689	61	160	50	35	46	34	85
Future Volume (vph)	84	430	133	43	689	61	160	50	35	46	34	85
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.96		1.00	0.99			1.00	0.85	1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3198		1658	3275			1681	1483	1658	1558	
Flt Permitted	0.26	1.00		0.42	1.00			0.69	1.00	0.54	1.00	
Satd. Flow (perm)	451	3198		725	3275			1211	1483	936	1558	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	91	467	145	47	749	66	174	54	38	50	37	92
RTOR Reduction (vph)	0	27	0	0	6	0	0	0	29	0	69	0
Lane Group Flow (vph)	91	585	0	47	809	0	0	228	9	50	60	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	43.6	37.5		39.2	35.3			19.3	19.3	19.3	19.3	
Effective Green, q (s)	43.6	37.5		39.2	35.3			19.3	19.3	19.3	19.3	
Actuated g/C Ratio	0.56	0.48		0.50	0.45			0.25	0.25	0.25	0.25	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	346	1539		411	1484			300	367	231	386	
v/s Ratio Prot	c0.02	0.18		0.01	c0.25						0.04	
v/s Ratio Perm	0.13			0.05				c0.19	0.01	0.05		
v/c Ratio	0.26	0.38		0.11	0.55			0.76	0.03	0.22	0.15	
Uniform Delay, d1	8.6	12.8		9.9	15.5			27.2	22.2	23.3	22.9	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	0.7		0.1	1.4			10.8	0.0	0.5	0.2	
Delay (s)	9.1	13.5		10.0	16.9			37.9	22.2	23.8	23.1	
Level of Service	Α	В		В	В			D	С	С	С	
Approach Delay (s)		13.0			16.5			35.7			23.3	
Approach LOS		В			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			18.4	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.58									
Actuated Cycle Length (s)			77.9		um of lost				17.2			
Intersection Capacity Utiliz	ation		60.2%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2027 AM (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Mov		ovement Mov	Dem			rival	Deg.	Aver.	Level of	0604-0	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	Fi [Total	lows HV]	Fi [Total	lows HV]	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
South	: Apple	eton	veh/h	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	All MCs	64	2.0	64	2.0	0.210	9.2	LOSA	0.9	6.2	0.47	0.58	0.47	45.6
2	T1	All MCs	8	2.0	8	2.0	0.210	3.7	LOSA	0.9	6.2	0.47	0.58	0.47	46.1
3	R2	All MCs	133	2.0	133	2.0	0.210	4.0	LOSA	0.9	6.2	0.47	0.58	0.47	46.0
Appro	ach		204	2.0	204	2.0	0.210	5.6	LOSA	0.9	6.2	0.47	0.58	0.47	45.8
East:	CR 49)													
4	L2	All MCs	66	2.0	66	2.0	0.133	7.8	LOSA	0.7	5.3	0.24	0.40	0.24	46.1
5	T1	All MCs	327	2.0	327	2.0	0.133	2.3	LOSA	0.8	5.4	0.23	0.32	0.23	47.2
6	R2	All MCs	16	2.0	16	2.0	0.133	2.7	LOSA	0.8	5.4	0.22	0.27	0.22	47.4
Appro	ach		410	2.0	410	2.0	0.133	3.2	LOSA	8.0	5.4	0.23	0.33	0.23	47.0
North	: Ram	say													
7	L2	All MCs	29	2.0	29	2.0	0.061	8.9	LOSA	0.2	1.6	0.42	0.58	0.42	45.3
8	T1	All MCs	12	2.0	12	2.0	0.061	3.5	LOSA	0.2	1.6	0.42	0.58	0.42	45.8
9	R2	All MCs	19	2.0	19	2.0	0.061	3.7	LOSA	0.2	1.6	0.42	0.58	0.42	45.6
Appro	ach		59	2.0	59	2.0	0.061	6.2	LOSA	0.2	1.6	0.42	0.58	0.42	45.5
West:	Ottaw	<i>a</i>													
10	L2	All MCs	9	2.0	9	2.0	0.159	7.9	LOSA	0.8	6.0	0.26	0.30	0.26	46.8
11	T1	All MCs	426	2.0	426	2.0	0.159	2.4	LOSA	0.9	6.1	0.25	0.30	0.25	47.4
12	R2	All MCs	48	2.0	48	2.0	0.159	2.8	LOSA	0.9	6.1	0.24	0.29	0.24	47.3
Appro	ach		484	2.0	484	2.0	0.159	2.6	LOSA	0.9	6.1	0.25	0.29	0.25	47.4
All Ve	hicles		1157	2.0	1157	2.0	0.210	3.5	LOSA	0.9	6.2	0.29	0.37	0.29	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:23 PM
Project: C:Users\MichelleChen\CGH TRANSPORTATION.CGH Working - Documents\Project\scale\CQU22-7 project\scale\CQU22-7 ale 4 Houchaimi \Mill \Valley Estates\DATA \Sidra\2022-142 Sidra 2022-11-22.sip9

MOVEMENT SUMMARY

✓ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2027 PM (Site)

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Mov ID	Turn	Mov Class	Dem	nand lows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% B Qu	ack Of	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		Ciass	[Total	HV]	[Total	HV]			Service	[Veh.	Dist]	Que	Rate	Cycles	
0			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South													0.50		45.0
1		All MCs		2.0		2.0	0.189	9.0	LOSA	0.8	5.7	0.46	0.58	0.46	45.3
2		All MCs		2.0		2.0	0.189	3.5	LOSA	0.8	5.7	0.46	0.58	0.46	45.9
3		All MCs		2.0		2.0	0.189	3.8	LOSA	0.8	5.7	0.46	0.58	0.46	45.7
Appro	ach		186	2.0	186	2.0	0.189	6.1	LOSA	0.8	5.7	0.46	0.58	0.46	45.5
East: (CR 49														
4	L2	All MCs	152	2.0	152	2.0	0.274	8.0	LOSA	1.7	12.4	0.32	0.43	0.32	45.7
5	T1	All MCs	631	2.0	631	2.0	0.274	2.5	LOS A	1.8	12.7	0.31	0.34	0.31	46.9
6	R2	All MCs	47	2.0	47	2.0	0.274	2.9	LOSA	1.8	12.7	0.30	0.29	0.30	47.1
Appro	ach		830	2.0	830	2.0	0.274	3.5	LOS A	1.8	12.7	0.31	0.35	0.31	46.7
North:	Rams	say													
7	L2	All MCs	20	2.0	20	2.0	0.065	9.9	LOSA	0.2	1.8	0.54	0.65	0.54	45.1
8	T1	All MCs	15	2.0	15	2.0	0.065	4.4	LOS A	0.2	1.8	0.54	0.65	0.54	45.6
9	R2	All MCs	18	2.0	18	2.0	0.065	4.7	LOSA	0.2	1.8	0.54	0.65	0.54	45.5
Appro	ach		53	2.0	53	2.0	0.065	6.6	LOSA	0.2	1.8	0.54	0.65	0.54	45.4
West:	Ottaw	a													
10	L2	All MCs	18	2.0	18	2.0	0.168	8.3	LOSA	0.9	6.6	0.37	0.36	0.37	46.3
11	T1	All MCs	378	2.0	378	2.0	0.168	2.8	LOSA	1.0	6.8	0.36	0.35	0.36	47.0
12	R2	All MCs	81	2.0	81	2.0	0.168	3.1	LOS A	1.0	6.8	0.34	0.33	0.34	46.9
Appro	ach		477	2.0	477	2.0	0.168	3.0	LOSA	1.0	6.8	0.35	0.34	0.35	47.0
All Vel	alalaa		1545	2.0	1545	2.0	0.274	3.8	LOSA	1.8	12.7	0.35	0.39	0.35	46.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:24 PM
Project: C:UsersWinchelleCheniCGH TRANSPORTATION/CGH Working - Documents \Sidra\2022-142 Sidra 2022-11-22.sip9

Appendix I

2032 Future Total Synchro and Sidra Worksheets

**				
Intersection Summary				
HCM 2000 Control Delay	18.6	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.75			
Actuated Cycle Length (s)	85.0	Sum of lost time (s)	12.3	
Intersection Capacity Utilization	87.0%	ICU Level of Service	Е	
Analysis Period (min)	15			
c. Critical Lane Group				

Internation						
Intersection	4.7					
Int Delay, s/veh	1.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			લ	ĵ.	
Traffic Vol, veh/h	16	21	26	155	98	17
Future Vol, veh/h	16	21	26	155	98	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	21	2	4	9	10	2
Mymt Flow	19	24	30	180	114	20
Mataglifica	M:		Maland		4-:0	
	Minor2		Major1		Major2	
Conflicting Flow All	364	124	134	0	-	0
Stage 1	124	-	-	-	-	-
Stage 2	240	-	-	-	-	-
Critical Hdwy	6.61	6.22	4.14	-	-	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-		-	-	-
Follow-up Hdwy	3.689	3.318		-	-	-
Pot Cap-1 Maneuver	599	927	1438	-	-	-
Stage 1	857	-	-	-	-	-
Stage 2	757	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	585	927	1438	-	-	-
Mov Cap-2 Maneuver	585	-	-	-	-	-
Stage 1	837	-	-	-	-	-
Stage 2	757	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.2		1.1		0	
HCM LOS	10.2 B		1.1		U	
TIOWI LOO	D					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1438	-	740	-	-
HCM Lane V/C Ratio		0.021	-	0.058	-	-

7.6 0 10.2

A B

0.2

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

Intersection												
Int Delay, s/veh	5.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Vol, veh/h	37	0	11	11	0	54	10	32	4	18	34	17
Future Vol. veh/h	37	0	11	11	0	54	10	32	4	18	34	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	71	93	71	93	93	93	71	71	93	93	71	71
Heavy Vehicles, %	3	2	45	2	2	2	30	2	2	2	6	6
Mvmt Flow	52	0	15	12	0	58	14	45	4	19	48	24
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	202	175	60	181	185	47	72	0	0	49	0	0
Stage 1	98	98	-	75	75	-	-	-	-	-	-	-
Stage 2	104	77		106	110							
Critical Hdwy	7.13	6.52	6.65	7.12	6.52	6.22	4.4			4.12		_
Critical Hdwy Stg 1	6.13	5.52	-	6.12	5.52	-	-			-		-
Critical Hdwy Stg 2	6.13	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.527	4.018	3.705	3.518	4.018	3.318	2.47			2.218		
Pot Cap-1 Maneuver	754	718	897	781	709	1022	1368	-	-	1558	-	-
Stage 1	906	814	-	934	833	-	-	-	-	-	-	-
Stage 2	899	831	-	900	804	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	698	701	897	754	692	1022	1368	-	-	1558	-	-
Mov Cap-2 Maneuver	698	701	-	754	692	-	-	-	-	-	-	-
Stage 1	896	803	-	924	824	-	-	-	-	-	-	-
Stage 2	839	822	-	873	794	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.4			9			1.7			1.6		
HCM LOS	10.4 B			A			1.7			1.0		
TIOM LOO	U			^								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1368	-	-	735	964	1558	-	-			
HCM Lane V/C Ratio		0.01				0.073	0.012					
HCM Control Delay (s)		7.7	0	-	10.4	9	7.3	0	-			
HCM Lane LOS		Α	A		В	A	Α	A	-			

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LDIX	INDL	4	1	ODIN
Traffic Vol. veh/h	86	21	7	95	91	28
Future Vol. veh/h	86	21	7	95	91	28
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	
Storage Length	0	-		-		-
Veh in Median Storag	-		-	0	0	-
Grade, %	0, # 0			0	0	
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	92	23	8	102	98	30
WWIII FIOW	92	23	0	102	90	30
Major/Minor	Minor2	- 1	Major1	N	/lajor2	
Conflicting Flow All	231	113	128	0	-	0
Stage 1	113	-	-	-	-	-
Stage 2	118	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	757	940	1458	-	-	-
Stage 1	912	-	-	-		-
Stage 2	907	-		_		_
Platoon blocked, %	501			-		-
Mov Cap-1 Maneuver	752	940	1458	-		
Mov Cap-1 Maneuver		340	1430			
Stage 1	907					
	907					
Stage 2	907	-	-	-		-
Approach	EB		NB		SB	
HCM Control Delay, s	10.4		0.5		0	
HCM LOS	В					
Minor Lane/Major Mvr	mt	NBL	NIRT	EBLn1	SBT	SBR
	III	1458		783		
Capacity (veh/h)			-	0.147	-	-
HCM Lane V/C Ratio	,	0.005		****	-	-
HCM Control Delay (s)	7.5	0	10.4	-	-
HCM Lane LOS	,	A	Α	В	-	-
HCM 95th %tile Q(vel	1)	0	-	0.5	-	-

HCM 95th %tile Q(veh) 0 - - 0.3 0.2 0 - -

	۶	→	*	•	←	*	4	1	~	-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		7	∱ β			ર્ન	7	Ĭ	ĵ»	
Traffic Volume (vph)	105	435	54	23	331	51	84	31	34	56	21	88
Future Volume (vph)	105	435	54	23	331	51	84	31	34	56	21	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.98		1.00	0.98			1.00	0.85	1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3261		1658	3250			1684	1483	1658	1534	
Flt Permitted	0.47	1.00		0.45	1.00			0.71	1.00	0.68	1.00	
Satd. Flow (perm)	829	3261		793	3250			1239	1483	1181	1534	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	473	59	25	360	55	91	34	37	61	23	96
RTOR Reduction (vph)	0	7	0	0	10	0	0	0	32	0	83	0
Lane Group Flow (vph)	114	525	0	25	405	0	0	125	5	61	36	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	50.2	44.8		44.2	41.8			10.0	10.0	10.0	10.0	
Effective Green, g (s)	50.2	44.8		44.2	41.8			10.0	10.0	10.0	10.0	
Actuated g/C Ratio	0.67	0.60		0.59	0.56			0.13	0.13	0.13	0.13	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	619	1963		499	1825			166	199	158	206	
v/s Ratio Prot	c0.01	c0.16		0.00	0.12						0.02	
v/s Ratio Perm	0.11			0.03				c0.10	0.00	0.05		
v/c Ratio	0.18	0.27		0.05	0.22			0.75	0.02	0.39	0.17	
Uniform Delay, d1	4.3	7.0		6.2	8.2			31.0	28.0	29.4	28.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.3		0.0	0.3			17.4	0.1	1.6	0.4	
Delay (s)	4.4	7.4		6.3	8.4			48.4	28.0	31.0	28.9	
Level of Service	Α	Α		Α	Α			D	С	С	С	
Approach Delay (s)		6.8			8.3			43.8			29.6	
Approach LOS		Α			Α			D			С	
Intersection Summary												
HCM 2000 Control Delay			14.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.36									
Actuated Cycle Length (s)	, i		74.4	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliza	ation		46.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
a Critical Lana Croup												

HCM 2000 Control Delay	14.4	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.36			
Actuated Cycle Length (s)	74.4	Sum of lost time (s)	17.2	
Intersection Capacity Utilization	46.3%	ICU Level of Service	Α	
Analysis Period (min)	15			
c Critical Lane Group				

	۶	→	*	•	—	4	1	1	/	-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	↑	7		4			4	
Traffic Volume (vph)	4	644	115	70	891	11	135	8	74	7	3	5
Future Volume (vph)	4	644	115	70	891	11	135	8	74	7	3	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes		0.99		1.00	1.00	0.97		0.99			0.99	
Flpb, ped/bikes		1.00		1.00	1.00	1.00		0.99			1.00	
Frt		0.98		1.00	1.00	0.85		0.95			0.95	
Flt Protected		1.00		0.95	1.00	1.00		0.97			0.98	
Satd. Flow (prot)		1682		1658	1728	1438		1592			1608	
Flt Permitted		1.00		0.23	1.00	1.00		0.80			0.87	
Satd. Flow (perm)		1675		393	1728	1438		1316			1436	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	4	678	121	74	938	12	142	8	78	7	3	5
RTOR Reduction (vph)	0	7	0	0	0	5	0	21	0	0	4	0
Lane Group Flow (vph)	0	796	0	74	938	7	0	207	0	0	11	0
Confl. Peds. (#/hr)	4		14	14		4	8		1	1		8
Confl. Bikes (#/hr)			2			3			2			2
Heavy Vehicles (%)	2%	3%	2%	2%	3%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8			4		
Actuated Green, G (s)		43.7		54.0	54.0	54.0		25.0			25.0	
Effective Green, g (s)		43.7		54.0	54.0	54.0		25.0			25.0	
Actuated g/C Ratio		0.48		0.59	0.59	0.59		0.27			0.27	
Clearance Time (s)		6.3		6.3	6.3	6.3		6.0			6.0	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		801		287	1022	850		360			393	
v/s Ratio Prot				0.01	c0.54							
v/s Ratio Perm		c0.48		0.14		0.00		c0.16			0.01	
v/c Ratio		0.99		0.26	0.92	0.01		0.57			0.03	
Uniform Delay, d1		23.7		11.6	16.7	7.7		28.6			24.3	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		30.4		0.5	14.2	0.0		2.2			0.1	
Delay (s)		54.1		12.1	30.9	7.7		30.8			24.4	
Level of Service		D		В	С	Α		С			С	
Approach Delay (s)		54.1			29.2			30.8			24.4	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			39.0	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capacity	ratio		0.89									
Actuated Cycle Length (s)			91.3	S	um of lost	time (s)			18.6			
Intersection Capacity Utilization	1		89.2%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EDL.	EDR	INDL	ND I	3B1 ♣	SDR
Traffic Vol, veh/h	'Y' 16	22	36	145	222	30
Future Vol. veh/h	16	22	36	145	222	30
Conflicting Peds, #/hr	0	0	30	145	0	0
Sign Control		Stop	Free	Free	Free	Free
RT Channelized	Stop	None				None
	0	None	-	None -	-	None -
Storage Length						
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	2	5	3	7	12	4
Mvmt Flow	17	23	38	151	231	31
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	474	247	262	0	-	0
Stage 1	247		-	-	-	-
Stage 2	227					-
Critical Hdwy	6.42	6.25	4.13			
Critical Hdwy Stg 1	5.42	0.20	7.10			
Critical Hdwy Stg 2	5.42		_	_		
Follow-up Hdwy	3.518		2 227	-	- 1	-
Pot Cap-1 Maneuver	549	784	1296			
	794	704	1290			
Stage 1			-			
Stage 2	811	-	-	-	-	-
Platoon blocked, %	FO.1	70.1	4000	-	-	-
Mov Cap-1 Maneuver	531	784	1296	-	-	-
Mov Cap-2 Maneuver	531	-	-	-	-	-
Stage 1	769	-	-	-	-	-
Stage 2	811	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.9		1.6		0	
HCM LOS	10.9 B		1.0		U	
HOW LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1296	-	653	-	-
HCM Lane V/C Ratio		0.029	-	0.061	-	-
HCM Control Delay (s))	7.9	0	10.9	-	-
		-				

Movement
Movement
Lane Configurations
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h 52 0 5 7 0 35 7 34 12 60 32 47 Conflicting Peds, #hr Stop Stop Stop Stop Stop Stop The 0 </td
Conflicting Peds, #hr 0
Sign Control Stop Free Free
RT Channelized - - None - - - - - - - - - - - - - - - - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0 0 0 0
Storage Length
Veh in Median Storage, # 0 - 0 0 - 0 0 - 0 0 9 9 94
Grade, % - 0 9 94 93 93 94 94 93 93 94 95 95 95 95 95 95 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
Peak Hour Factor 94 93 94 93 93 93 94 94 93 93 94 94 93 93 94 94 93 93 94 94 93 93 94 94 93 93 94 94 93 93 94 94 94 93 93 94 94 94 93 93 94 94 94 93 93 94 94 94 93 93 94 94 94 93 93 94 94 94 93 93 94 94 94 93 93 94 95 95 Major
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 266 253 60 249 272 43 85 0 0 49 0 0 Stage 1 190 190 -57 57 -
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All Stage 1 266 253 60 249 272 43 85 0 0 49 0 0 Stage 1 190 190 - 57 57 -<
Conflicting Flow All 266 253 60 249 272 43 85 0 0 49 0 0 Stage 1 190 190 57 57 -
Conflicting Flow All 266 253 60 249 272 43 85 0 0 49 0 0 Stage 1 190 190 57 57 -
Conflicting Flow All 266 253 60 249 272 43 85 0 0 49 0 0 Stage 1 190 190 - 57 57 -
Stage 1 190 190 - 57 57 -
Stage 2 76 63 - 192 215
Critical Hdwy 7.2 6.52 6.22 7.12 6.52 6.22 4.12 - 4.12 - 4.12 - Critical Hdwy Stg 1 6.2 5.52 - 6.12 5.52
Critical Hdwy Stg 1 6.2 5.52 6.12 5.52 -
Critical Hdwy Stg 2 6.2 5.52 - 6.12 5.52
Follow-up Hdwy 3.59 4.018 3.318 3.518 4.018 3.318 2.218 - 2.218 - Pot Cap-1 Maneuver 671 650 1005 705 635 1027 1512 - 1558 - Stage 1 794 743 - 955 847
Stage 1 794 743 - 955 847 -
Stage 2 914 842 - 810 725
Stage 2 914 842 - 810 725 -
Mov Cap-1 Maneuver 622 618 1004 675 603 1027 1511 1558
N O 0 N COO CAO C75 COO
Mov Cap-2 Maneuver 622 618 - 675 603
Stage 1 789 710 - 950 843
Stage 2 876 838 - 770 692
Approach EB WB NB SB
HCM Control Delay, s 11.2 9 1 3.2
HCM LOS B A
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1511 643 945 1558
HCM Lane V/C Ratio 0.005 0.094 0.048 0.041
HCM Control Delay (s) 7.4 0 - 11.2 9 7.4 0 -
HCM Lane LOS A A - B A A A -
HCM 95th %tile Q(veh) 0 0.3 0.1 0.1

A A B - 0.1 - 0.2 - -

HCM Lane LOS HCM 95th %tile Q(veh)

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIN	INDL	4	1301	ODIN
Traffic Vol. veh/h	'Y' 56	14	24	125	148	96
	56	14	24		148	96
Future Vol, veh/h	56	14	0	125	148	96
Conflicting Peds, #/hr	-	·	-	0	-	•
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	15	26	134	159	103
	Minor2		Major1		/lajor2	
Conflicting Flow All	397	211	262	0	-	0
Stage 1	211	-	-	-	-	-
Stage 2	186	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-		-
Critical Hdwy Stg 2	5.42	-		_	-	-
Follow-up Hdwy		3.318	2 218			
Pot Cap-1 Maneuver	608	829	1302			
Stage 1	824	023	1002			
Stage 2	846	- 1	-		-	-
	646	-	-	-	-	
Platoon blocked, %		200	1000	-	-	-
Mov Cap-1 Maneuver	595	829	1302	-	-	-
Mov Cap-2 Maneuver	595	-	-	-	-	-
Stage 1	806	-	-	-	-	-
Stage 2	846	-	-	-	-	-
Anneach	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	11.5		1.3		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
	IL .					
Capacity (veh/h)		1302	-		-	-
HCM Lane V/C Ratio		0.02		0.119	-	-
HCM Control Delay (s)		7.8	0	11.5	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.4	-	-
•						

	*	→	•	•	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† }		Ť	↑ î>			ની	7	7	ĵ.	
Traffic Volume (vph)	84	462	133	43	742	61	160	50	35	46	34	85
Future Volume (vph)	84	462	133	43	742	61	160	50	35	46	34	85
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	
Frt	1.00	0.97		1.00	0.99			1.00	0.85	1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00	0.95	1.00	
Satd. Flow (prot)	1658	3204		1658	3278			1681	1483	1658	1558	
Flt Permitted	0.23	1.00		0.39	1.00			0.69	1.00	0.54	1.00	
Satd. Flow (perm)	407	3204		688	3278			1211	1483	936	1558	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	91	502	145	47	807	66	174	54	38	50	37	92
RTOR Reduction (vph)	0	24	0	0	6	0	0	0	29	0	69	0
Lane Group Flow (vph)	91	623	0	47	867	0	0	228	9	50	60	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	43.6	37.5		39.2	35.3			19.3	19.3	19.3	19.3	
Effective Green, g (s)	43.6	37.5		39.2	35.3			19.3	19.3	19.3	19.3	
Actuated g/C Ratio	0.56	0.48		0.50	0.45			0.25	0.25	0.25	0.25	
Clearance Time (s)	5.0	6.2		5.0	6.2			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	325	1542		394	1485			300	367	231	386	
v/s Ratio Prot	c0.02	0.19		0.01	c0.26						0.04	
v/s Ratio Perm	0.13			0.05				c0.19	0.01	0.05		
v/c Ratio	0.28	0.40		0.12	0.58			0.76	0.03	0.22	0.15	
Uniform Delay, d1	8.8	13.0		9.9	15.8			27.2	22.2	23.3	22.9	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.5	0.8		0.1	1.7			10.8	0.0	0.5	0.2	
Delay (s)	9.3	13.8		10.0	17.5			37.9	22.2	23.8	23.1	
Level of Service	Α	В		В	В			D	С	С	С	
Approach Delay (s)		13.2			17.1			35.7			23.3	
Approach LOS		В			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			18.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.61									
Actuated Cycle Length (s)			77.9	S	um of lost	time (s)			17.2			
Intersection Capacity Utiliz	ation		61.7%	IC	U Level	of Service			В			
Analysis Period (min)			15									
a Critical Lana Croup												

c Critical Lane Group

MOVEMENT SUMMARY

₩ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2032 AM (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Vehi	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	ı: Appl	eton													
1	L2	All MCs	68	2.0	68	2.0	0.223	9.3	LOSA	0.9	6.6	0.49	0.60	0.49	45.5
2	T1	All MCs	8	2.0	8	2.0	0.223	3.8	LOSA	0.9	6.6	0.49	0.60	0.49	46.1
3	R2	All MCs	137	2.0	137	2.0	0.223	4.1	LOSA	0.9	6.6	0.49	0.60	0.49	45.9
Appro	oach		213	2.0	213	2.0	0.223	5.7	LOSA	0.9	6.6	0.49	0.60	0.49	45.8
East:	CR 49	1													
4	L2	All MCs	69	2.0	69	2.0	0.142	7.8	LOSA	0.8	5.8	0.25	0.40	0.25	46.0
5	T1	All MCs	353	2.0	353	2.0	0.142	2.3	LOSA	0.8	5.9	0.24	0.32	0.24	47.2
6	R2	All MCs	16	2.0	16	2.0	0.142	2.8	LOSA	0.8	5.9	0.23	0.27	0.23	47.3
Appro	oach		438	2.0	438	2.0	0.142	3.2	LOS A	0.8	5.9	0.24	0.33	0.24	47.0
North	: Ram	say													
7	L2	All MCs	29	2.0	29	2.0	0.062	9.0	LOSA	0.2	1.6	0.43	0.58	0.43	45.2
8	T1	All MCs	12	2.0	12	2.0	0.062	3.5	LOSA	0.2	1.6	0.43	0.58	0.43	45.8
9	R2	All MCs	19	2.0	19	2.0	0.062	3.8	LOSA	0.2	1.6	0.43	0.58	0.43	45.6
Appro	oach		59	2.0	59	2.0	0.062	6.2	LOSA	0.2	1.6	0.43	0.58	0.43	45.5
West	Ottaw	<i>a</i>													
10	L2	All MCs	9	2.0	9	2.0	0.171	7.9	LOSA	0.9	6.5	0.27	0.30	0.27	46.7
11	T1	All MCs	458	2.0	458	2.0	0.171	2.4	LOSA	0.9	6.7	0.26	0.30	0.26	47.4
12	R2	All MCs	52	2.0	52	2.0	0.171	2.9	LOSA	0.9	6.7	0.25	0.29	0.25	47.2
Appro	oach		519	2.0	519	2.0	0.171	2.6	LOSA	0.9	6.7	0.26	0.30	0.26	47.4
All Ve	hicles		1230	2.0	1230	2.0	0.223	3.5	LOSA	0.9	6.7	0.30	0.37	0.30	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:24 PM
Project: C:Users\MichelleChenlCGH TRANSPORTATION.CGH Working - Documents\Project\scale\Cuser\Project\scale\Project\scale\Project\scale\Project\scale\Project\project\scale\Project\scale\Project\project\scale\Project\project\project\scale\Project\project\project\project\project\project\project\project\project\Project\p \Sidra\2022-142 Sidra 2022-11-22.sip9

MOVEMENT SUMMARY

✓ Site: 101 [Ottawa/CR49 & Appleton/Ramsay FT2032 PM (Site)

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site Category: (None) Roundabout

Mov ID	Turn	Mov Class	Dem Fl	and ows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% B Qu	ack Of	Prop. Que	Eff. Stop	Aver. No. of	Aver Speed
		0.000	[Total veh/h	HV]	[Total		v/c			[Veh.	Dist]	4,00	Rate	Cycles	
South	: Apple	eton	ven/n	70	veh/h	70	V/C	sec	_	ven	m				km/l
1	L2	All MCs	88	2.0	88	2.0	0.202	9.1	LOSA	0.9	6.1	0.47	0.60	0.47	45.
2	T1	All MCs	12	2.0	12	2.0	0.202	3.6	LOS A	0.9	6.1	0.47	0.60	0.47	45.8
3	R2	All MCs	95	2.0	95	2.0	0.202	3.9	LOSA	0.9	6.1	0.47	0.60	0.47	45.6
Appro	ach		195	2.0	195	2.0	0.202	6.2	LOS A	0.9	6.1	0.47	0.60	0.47	45.4
East:	CR 49)													
4	L2	All MCs	157	2.0	157	2.0	0.294	8.1	LOS A	1.9	13.5	0.34	0.43	0.34	45.7
5	T1	All MCs	678	2.0	678	2.0	0.294	2.5	LOS A	2.0	13.9	0.32	0.34	0.32	46.9
6	R2	All MCs	47	2.0	47	2.0	0.294	2.9	LOS A	2.0	13.9	0.31	0.29	0.31	47.0
Appro	ach		882	2.0	882	2.0	0.294	3.5	LOS A	2.0	13.9	0.32	0.35	0.32	46.7
North:	Rams	say													
7	L2	All MCs	20	2.0	20	2.0	0.067	10.0	LOS B	0.3	1.8	0.56	0.66	0.56	45.0
8	T1	All MCs	15	2.0	15	2.0	0.067	4.6	LOS A	0.3	1.8	0.56	0.66	0.56	45.6
9	R2	All MCs	18	2.0	18	2.0	0.067	4.8	LOS A	0.3	1.8	0.56	0.66	0.56	45.4
Appro	ach		53	2.0	53	2.0	0.067	6.7	LOS A	0.3	1.8	0.56	0.66	0.56	45.3
West:	Ottaw	/a													
10	L2	All MCs	18	2.0	18	2.0	0.181	8.3	LOS A	1.0	7.2	0.38	0.36	0.38	46.3
11	T1	All MCs	406	2.0	406	2.0	0.181	2.8	LOS A	1.0	7.4	0.37	0.35	0.37	47.0
12	R2	All MCs	87	2.0	87	2.0	0.181	3.1	LOS A	1.0	7.4	0.35	0.34	0.35	46.9
Appro	ach		510	2.0	510	2.0	0.181	3.0	LOSA	1.0	7.4	0.36	0.35	0.36	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Monday, November 27, 2023 9:13:24 PM
Project: C:UsersWinchelleCheniCGH TRANSPORTATION/CGH Working - Documents \Sidra\2022-142 Sidra 2022-11-22.sip9

Appendix J

Turn Lane Warrants

Existing																
Design Speed										Yes						
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9/1	oft Turn Volum	e Advancing Volume	Onn
KIII/II	AM	37	0	11	0	0	0	10	8	0	0	16	17	0.0%	a Advancing Volume	Орр
	PM	52	0	5	0	0	0	7	10	0	0	14	47	0.0%	61	
		32	Ü	,	Ü	•	·	•	10	·	Ü			0.070	V-	
Future Background 2027																
Design Speed										Yes						
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I	eft Turn Volum	e Advancing Volume	Opp
	AM	37	0	11	0	0	0	10	20	0	0	25	17	0.0%	42	
	PM	52	0	5	0	0	0	7	22	0	0	23	47	0.0%	70	
5 t p. d d 2022																
Future Background 2032																
Design Speed		FRT	500	14/01	WOT	14/00	NE	NOT	NDD	Yes SBL	CDT	con	0/1	.6		
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR		SBT	SBR		eft Turn Volum	-	· Op
	AM	37	0	11	0	0	0	10	32	0	0	34	17	0.0%	51	
	PM	52	0	5	0	0	0	7	34	0	0	32	47	0.0%	79	
Future Total 2027																
Design Speed										Yes						
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I	eft Turn Volum	e Advancing Volume	Ор
	AM	37	0	11	11	0	54	10	20	4	18	25	17	30.0%	60	
	PM	52	0	5	7	0	35	7	22	12	60	23	47	46.2%	130	
Future Total 2032																
Design Speed										Yes						
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%1	eft Turn Volum	e Advancing Volume	Op
•	AM	37	0	11	11	0	54	10	32	4	18	34	17	26.1%	69	

Existing																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn Volume	Advancing Volume O	pposing
	AM	37	0	11	0	0	0	10	8	0	0	16	17	77.1%	48	0
	PM	52	0	5	0	0	0	7	10	0	0	14	47	91.2%	57	0
Future Background 2027																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn Volume	Advancing Volume O	pposing
	AM	37	0	11	0	0	0	10	20	0	0	25	17	77.1%	48	0
	PM	52	0	5	0	0	0	7	22	0	0	23	47	91.2%	57	0
Future Background 2032																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn Volume	Advancing Volume O	pposing
	AM	37	0	11	0	0	0	10	32	0	0	34	17	77.1%	48	0
	PM	52	0	5	0	0	0	7	34	0	0	32	47	91.2%	57	0
Future Total 2027																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn Volume	Advancing Volume O	pposing
	AM	37	0	11	11	0	54	10	20	4	18	25	17	77.1%	48	65
	PM	52	0	5	7	0	35	7	22	12	60	23	47	91.2%	57	42
Future Total 2032																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn Volume	Advancing Volume O	pposing
	AM	37	0	11	11	0	54	10	32	4	18	34	17	77.1%	48	65
	PM	52	0	5	7	0	35	7	34	12	60	32	47	91.2%	57	42

Existing																
Design Speed				Yes												
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9/1	oft Turn	Volume Advancing	Volume Opposing
Killyli	AM	37	0	11	0	0	0	10	8	0	0	16		#DIV/0!	0	
	PM	52	0	5	0	0	0	7	10	0	0	14		#DIV/0!	0	
	1 141	32	Ü	,	· ·	Ü	o	,	10	o	Ü	14	77	#DIV/0:	0	57
Future Background 2027																
Design Speed				Yes												
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%1	Left Turn	Volume Advancing	Volume Opposing
	AM	37	0	11	0	0	0	10	20	0	0	25	17	#DIV/0!	0	48
	PM	52	0	5	0	0	0	7	22	0	0	23	47	#DIV/0!	0	57
Future Background 2032																
Design Speed				Yes												
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%1	Left Turn	Volume Advancing	Volume Opposing
	AM	37	0	11	0	0	0	10	32	0	0	34		#DIV/0!	0	
	PM	52	0	5	0	0	0	7	34	0	0	32		#DIV/0!	0	57
Future Total 2027																
Design Speed				Yes												
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	941	oft Turn	Volume Advancing	Volume Opposing
oo kiiyii	AM	37	0	11	11	0	54	10	20	4	18	25	17	16.9%		
	PM	52	0	5	7	0	35	7	22	12	60	23	47	16.7%		
Future Total 2032																
Design Speed				Yes												
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%	eft Turn	Volume Advancing	Volume Opposing
oo kiiyii	AM	37	0	11	11	0	54	10	32	4	18	34	17	16.9%		
	PM	52	0	5	7	0	35	7	34	12	60	32	47	16.7%		
		J.		-	•			•	5-		-		/	10.770		

Existing																
Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			olume Advancing	Volume Opposing
	AM	37	0	11	0	0	0	10	8	0	0	16	17	55.6%	18	
	PM	52	0	5	0	0	0	7	10	0	0	14	47	41.2%	17	61
Future Background 2027																
Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			/olume Advancing	Volume Opposing
	AM	37	0	11	0	0	0	10	20	0	0	25	17	33.3%	30	
	PM	52	0	5	0	0	0	7	22	0	0	23	47	24.1%	29	70
Future Background 2032																
Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			olume Advancing	Volume Opposing
	AM	37	0	11	0	0	0	10	32	0	0	34	17	23.8%	42	
	PM	52	0	5	0	0	0	7	34	0	0	32	47	17.1%	4:	. 79
Future Total 2027																
Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn \	/olume Advancing	Volume Opposing
	AM	37	0	11	11	0	54	10	20	4	18	25	17	29.4%	34	60
	PM	52	0	5	7	0	35	7	22	12	60	23	47	17.1%	4:	130
Future Total 2032																
Design Speed							Yes									
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn \	/olume Advancing	Volume Opposing
	AM	37	0	11	11	0	54	10	32	4	18	34	17	21.7%	46	69
	PM	52	0	5	7	0	35	7	34	12	60	32	47	13.2%	53	139

Access #2 @ Appleton Side Road

Future Total 2027																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9	6Left Turn	Volume Advancing	Volume Opposing
	AM	86	0	22	0	0	0	7	87	0	0	85	28	7.4%	94	113
	PM	56	0	14	0	0	0	24	116	0	0	138	96	17.1%	140	234
Future Total 2032																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9	6Left Turn	Volume Advancing	Volume Opposing
	AM	86	0	22	0	0	0	7	95	0	0	91	28	6.9%	102	119
	PM	56	0	14	0	0	0	24	125	0	0	148	96	16.1%	149	244

Access #2 @ Appleton Side Road

Future Total 2027																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	86	0	22	0	0	0	7	87	0	0	85	28	79.6%	108	3 0
	PM	56	0	14	0	0	0	24	116	0	0	138	96	80.0%	70	0
Future Total 2032																
Design Speed	Yes															
60 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	86	0	22	0	0	0	7	95	0	0	91	28	79.6%	108	3 0
	PM	56	0	14	0	0	0	24	125	0	0	148	96	80.0%	70	0

