Mississippi Mills Wastewater System

2022 Annual Report

January 1, 2022 – December 31, 2022

Prepared By

This report has been prepared to meet the requirements set out in the facility Certificate of Approval #1637-AC8NT7 dated August 8, 2016.

Contents

1	Compliance Report Card1					
2	2 System/Process Description1					
	2.1	Notice of Modifications - Proposed Alterations, Extensions, or Replacement to Works2				
3	E	ffluent Quality Assurance or Control Measures2				
4	т	reatment Flows				
	4.1	Raw Flow (m ³ /d)3				
	4.2	Annual Comparison (m ³)3				
	4.3	Septage Volumes4				
	Т	otal Monthly Volume Received				
5	R	aw Sewage Quality4				
6	E	ffluent Quality4				
	6.1	Effluent Exceedance Summary5				
	6.2	Other Effluent Sampling Issues				
7	E	ffluent Parameter Summary5				
	7.1	CBOD5				
	7.2	Total Suspended Solids6				
	7.3	Total Phosphorus6				
	7.4	Total Ammonia Nitrogen7				
	7.5	E-coli				
	7.6	pH8				
	7.7	Acute Lethality				
8	S	eptage Quality9				
9	В	iosolids9				
	9.1	Biosolids Disposal Summary9				
	9.2	Annual Comparison9				
	9.3	Quality9				
10)	Summary of Complaints9				
11	L	Summary of Bypass/Overflows 10				
12	2	Summary of Spills/Abnormal Discharges 10				
13	13 Maintenance					
	13.1	Maintenance Highlights				

13.2	Calibration	12
14 C	ollection Highlights	12
	Collection Highlights	
14.2	Planning Initiatives	12

Appendix A – Facility Assessment Report

Appendix B – Septage Sample Data

Appendix C – Biosolids Quality

Appendix D – Calibration Records

1 Compliance Report Card

Compliance Event	# of Events	Details
Ministry of Environment Inspections	0	There were no Inspections during the reporting period
Ministry of Labour Inspections	0	There were no Inspections during the reporting period
Effluent Parameter Exceedances	0	There were no parameter exceedances during the reporting period
Bypass/Overflows	3	See Bypass and Overflow section
Community Complaints	0	There were no Community Complaints during the reporting period
Spills	2	Two (2) spill during the reporting period. See spill section
Operating Issues	0	There were no operating issues during the reporting period

2 System/Process Description

Flow enters the Wastewater treatment plant and passes through screen channels which contain fine screens that lead to a screw compactor. Grit is removed using circular vortex grit removal, air lift and grit classifier system units.

Flow then moves to secondary treatment which consists of two (2) treatment trains using the extended aeration activated sludge process. Each train is equipped with an aeration tank, anoxic zone and a secondary clarifier. Chemicals are added to the process for phosphorus control. Tertiary treatment is achieved using Five (5) filter trains with three (3) filtration cells in each. Disinfection is provided using Ultraviolet (UV) lights.

Flow then moves to secondary treatment which consists of two (2) treatment trains using the extended aeration activated sludge process. Each train is equipped with an aeration tank, anoxic zone and a secondary clarifier. Chemicals are added to the process for phosphorus control. Tertiary treatment is achieved using Five (5) filter trains with three (3) filtration cells in each. Disinfection is provided using Ultraviolet (UV) lights.

Waste Activated Sludge (WAS) is transferred from the secondary clarifiers and thickened via rotary disk thickeners. Thickened WAS sludge is pumped into an ATAD for further sludge breakdown and then transferred via pump to the SNDR for stabilization. Digested sludge is pumped to the Fournier press to process cake for future land disposal.

The Mississippi Mills WWTP also consists of a septage receiving station consisting of a storage tank, two (one duty and one standby) dry-pit pumps, and a grinder on the inlet piping.

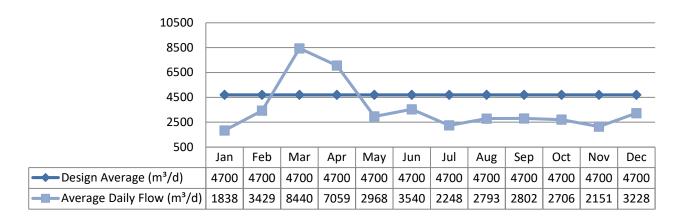
2.1 <u>Notice of Modifications - Proposed Alterations, Extensions, or Replacement to</u> Works

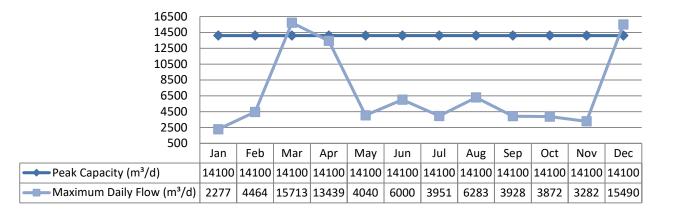
There were no modifications, proposed alterations, extensions or replacements that would affect Schedule A subsection 1 and subsection 3 of the Certificate of Approval.

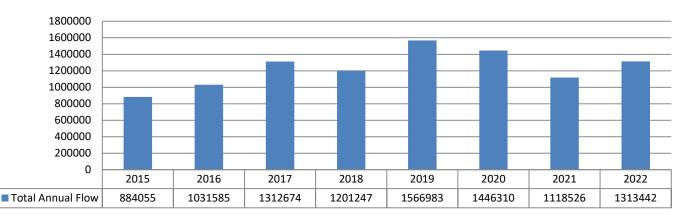
3 Effluent Quality Assurance or Control Measures

The Municipality of Mississippi Mills facilities are part of OCWA's operational Mississippi Cluster. The facilities are supported by regional and corporate resources. Operational Services are delivered by OCWA staff that live and work in the community.

OCWA operates facilities in compliance with applicable regulations. The facility has comprehensive manuals detailing operations, maintenance, instrumentation, and emergency procedures. All procedures are treated as active documents, with annual reviews.

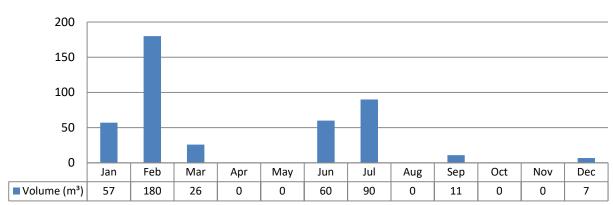

OCWA has additional "Value Added" and operational support services that the Municipality of Mississippi Mills benefits from including:


- Access to a network of operational compliance and support experts at the regional and corporate level, as well as affiliated programs that include the following:
 - Quality & Environmental Management System, Occupational Health & Safety System and an internal compliance audit system
 - Process Data Management (PDM) facility operating information repository, which consolidates field data, online instrumentation, and electronic receipt of lab test results for reporting, tracking and analysis
 - Work Management System (WMS) that tracks and reports maintenance activity, and creates predictive and preventative reports
 - Outpost 5 wide-area SCADA system allows for process optimization and data logging, process trending, remote alarming and optimization of staff time
- Client reporting which includes operational data, equipment inventory, financial statements, maintenance work orders, and capital status reports
- Site-Specific Contingency Plans and Standard Operating Procedures
- Use of accredited laboratories
- Additional support in response to unusual circumstances, and extra support in an emergency.
- Use of sampling schedules for external laboratory sampling

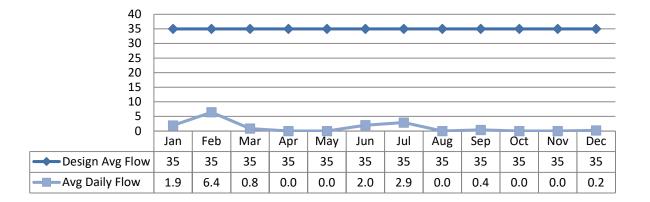

4 Treatment Flows

4.1 Raw Flow (m³/d)

Compliance is calculated as an annual average flow. The annual average flow for 2022 was 3,598.5 m^3/d , which is in compliance with the limit of 4,700 m^3/d . The flow spikes are associated to wet weather events such as heavy rain and seasonal changes such as the spring snow melt.



4.2 Annual Comparison (m³)


4.3 Septage Volumes

Average daily flow for $2022 = 1.2 \text{ m}^3/\text{d}$ Total Volume for $2022 = 430.8 \text{ m}^3$

Septage flows are included in the Raw Flows as it enters the influent stream prior to the raw flow meter.

Total Monthly Volume Received

5 Raw Sewage Quality

Results of raw sewage concentrations and loadings are available in the Facility Performance Assessment Report in Appendix A.

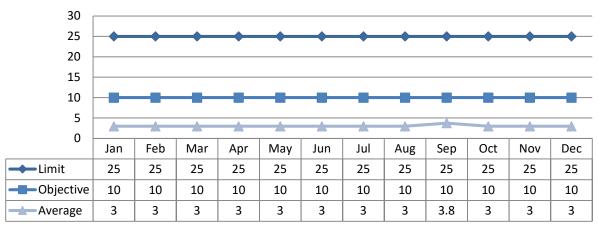
6 Effluent Quality

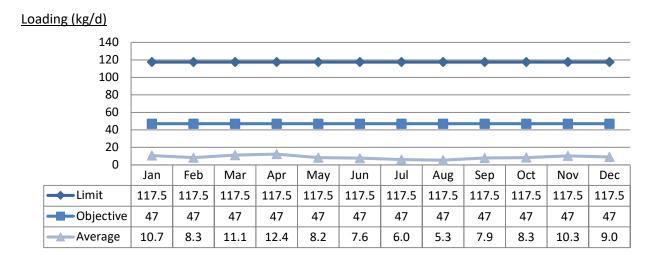
The limits are based on current requirements in the facilities Environmental Compliance Approval. Laboratory samples are submitted to an accredited laboratory for regulatory analysis.

The Federal Government also regulates certain sewage effluent parameters under the Federal Fisheries Act. The results are submitted to Environment and Climate Change Canada's Effluent Regulatory and Reporting Information System (ERRIS) on a quarterly basis.

6.1 Effluent Exceedance Summary

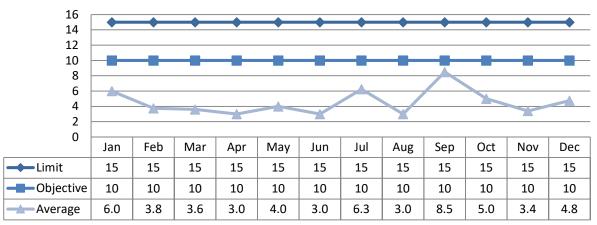
Date	Parameter	Exceedance	Limit	Value	Corrective Action
There were no effluent exceedances during the reporting period					

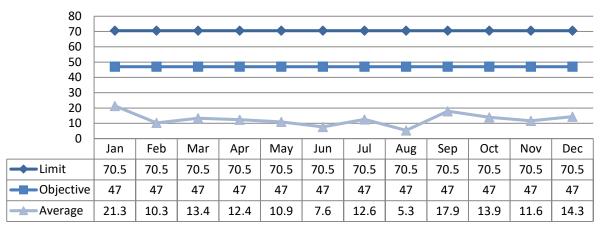

6.2 Other Effluent Sampling Issues


Sample	Legislation	Date	Details	Response
The were no e	ffluent sampling	g issues during t	he reporting period	

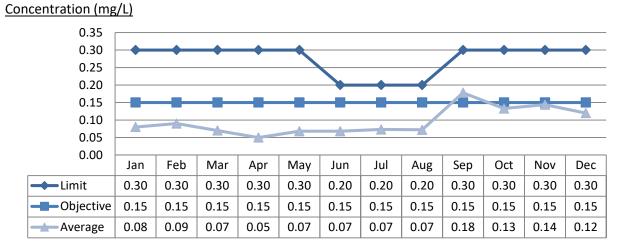
7 Effluent Parameter Summary

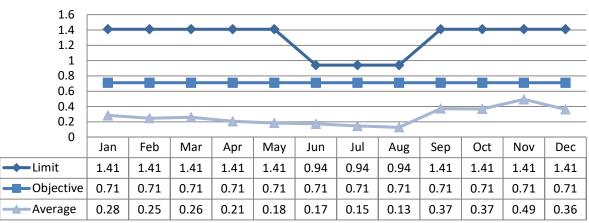
7.1 <u>CBOD5</u>

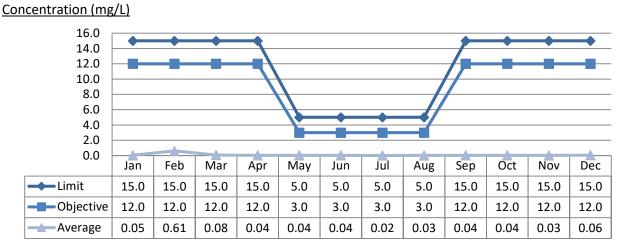

Concentration (mg/L)

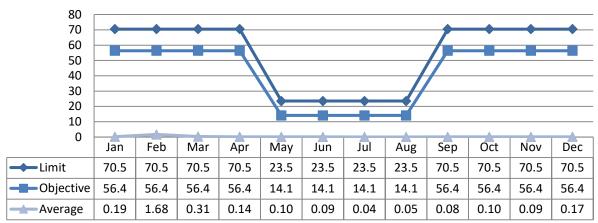


7.2 Total Suspended Solids

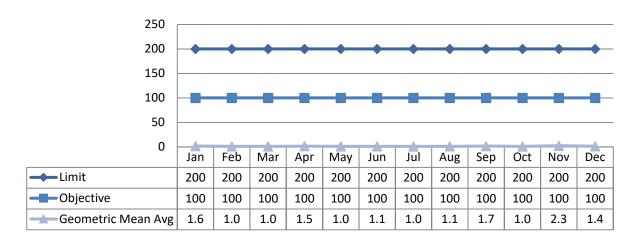

Concentration (mg/L)


Loading (kg/d)


7.3 Total Phosphorus


Loading (kg/d)

7.4 Total Ammonia Nitrogen



Loading (kg/d)

7.5 <u>E-coli</u>

Geometric Mean Average

7.6 <u>pH</u>

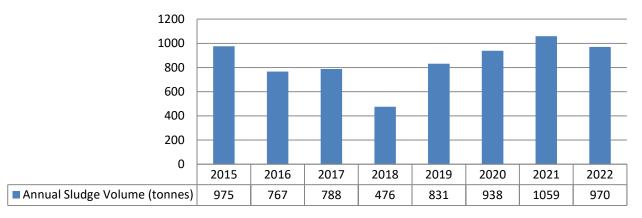
7.7 Acute Lethality

There were four (4) samples collected in 2022 and tested for acute lethality (Rainbow Trout and Daphnia Magna). Results are displayed as % mortality.

Quarter	Rainbow Trout	Daphnia Magna
1 st Quarter	0%	0%
2 nd Quarter	0%	0%
3 rd Quarter	0%	0%
4 th Quarter	0%	0%

8 Septage Quality

Septage was tested when received. A summary of the results is attached in Appendix B. Grab samples are collected from each load.


9 Biosolids

Sludge generated from the treatment plant was spread on agricultural land during the spreading season as per the Nutrient Management Act O.Reg 267/03. This facility dewaters and biosolids are handled as cake. During the winter cake is stored on-site until certified sites are ready for spreading.

9.1 Biosolids Disposal Summary

Date	Site	NASM Plan number	Volume (MT)
May 13-25, 2022	Cochran – Steele Farm	23782	568.57
October 24-25 2022	Cochran – Steele Farm	23782	401.67
		Total	970.24

9.2 Annual Comparison

9.3 Quality

The biosolids sampling results are summarized in Appendix C. All results met the established guidelines.

10 Summary of Complaints

etails	Details	Location	Date	
There were no community complaints for the reporting period.				
There were no community complaints for the reporting period.				

11 Summary of Bypass/Overflows

Date	Event	Details of Events
08-Aug-2022	Gemmill's Bay SPS	Heavy rain event
	Overflow	
17-Dec-2022	Mississippi Mills WWT UV	Power outage occurred and the generator ran to maintain operations. Upon returning to line power, the SCADA system showed the UV system as operational. During Monday rounds, operations staff noticed the UV system was not in operation. Power and communications were was reset to the UV system
31-Dec-2022	Gemmill's Bay SPS Overflow	An extreme rain event and snow melt caused a sudden spike in the flow

12 Summary of Spills/Abnormal Discharges

Date	Event	Details of Events
19-Mar-2022	Effluent Spill	A spill at the Mississippi Mills WWTF occurred due to a root
		infiltration of the outfall pipe. The spill was from a manhole along
		the final effluent outfall pipe. The root infiltration would not allow
		the full capacity of flow to pass and caused the spill
26-Mar-2022	Effluent Spill	Due to root infiltration maintenance along the outfall pipe, flows
		were diverted to attenuation pond Cell A. Prolonged maintenance
		and diversion brought Cell A to full capacity. With MECP's
		approval, staff pumped raw sewage overland from Cell A to Cell B.

13 Maintenance

OCWA uses a risk-based preventative maintenance framework that ensures assets are maintained to manufacturer's and/or industry standards. Maintenance is completed using various tools and operational supports. The Ottawa Valley Hub has specialized certified staff such as Millwrights, Electricians and Instrumentation Specialists to name a few.

OCWA uses a Workplace Maintenance System (WMS). WMS is a maintenance tracking system that can generate work orders as well as give summaries of completed and scheduled work. During the year, the operating authority at the facility generates scheduled work orders on a weekly, monthly and annual basis. The service work is recorded in the work order history. This ensures routine and preventive maintenance is carried out. Emergency and capital repair maintenance is completed and added to the system.

Capital projects are listed and provided to the Municipality of Mississippi Mills in the form of a "Capital Forecast". This list is developed by facility staff and provides recommendations for facility components requiring upgrading or improvement.

13.1 Maintenance Highlights

WO #	Summary		
2869261	Capital #1 Blower Replacement		
2872290	Capital Alum Pump Head Replacement Kits		
2872292	Capital Portable Hach Meters Servicing		
2923093	Capital Compressor Service		
2963297	Capital Replacement Parts for Compressor #2		
2965655	Capital SCADA Programmer Site Visit		
3015764	Capital Installed Davit Stand For Mixer for Aeration Tank 1		
3016406	Capital Replacement Impeller for Anoxic Mixer		
3016681	Capital Hot Water Tank Repairs		
3017069	Miscellaneous Capital Items < \$200		
3018310	Capital Portable Hach Meter pH Probe		
3066173	Capital Main Office AC not working		
3107140	Capital Replacement Polymer Injection Check Valve Fournier Press		
3107151	Capital Disk Thickener Polymer Panel Check Valve		
3145670	Capital Annual Septage Receiving Website Invoice		
2634512	Capital WAS Pump Motor Replacement		
2635018	Capital UV Sensor Probe		
2635039	Capital Hach Technician On Site UVT		
2637697	Capital Boiler 1 troubleshooting		
2638131	Capital Miscellaneous Items < \$200		
2638561	Capital SPS Cleanout by Pump Truck		
2638613	Capital CP 7 communications		
2676549	Capital Blower 1 - Inverter Fault Alarm		
2678121	Capital New Fan Motor for Heater in Blower Room		
2680401	Capital UPS battery back up		
2681152	Capital Ignition Assembly		
2681414	Capital Disk Thickener #2 Pump Motor Faulting		
2725647	Capital Alum Panel Replacement Parts		
2774261	Capital ATAD valve not responding		
2774286	Capital Flow Meter Fault Sludge 2 flow meter		
2824015	Capital IR Scan for all roofs		
2824892	Capital SCADA Programmer site visit		
2867012	Capital Sand Filter Parts		
2869324	Capital Backflow Prevention Service and Repair		
2871281	Main Breaker Communication Lost		
2872288	Capital UV Sensor Assay		
2874357	Capital Final Effluent pH Electrode		
2921178	Capital Main Office and Lab AC units not working		
2923084	Capital Final Effluent pH Probe		
2962278	Capital O ₂ Sensor		
2962610	Capital Replacement parts for Compressor #2		
2963247	Capital Annual Website Registration Fee		
3014832	Capital RP Backflow		
3015765	Capital Installed Davit Stand for Mixer for Aeration Tank 2		
3016126	Capital Replacement Impeller for Anoxic Mixer		

Page	12
------	----

WO #	Summary
3016661	Capital New Propeller for Anoxic Mixer 2
3148218	Capital Capital Controls Chain & Flight Control Issues and UV Dosage Alarm

13.2 Calibration

The flow meters were calibrated on January 19th 2022. Records are attached in Appendix D. Analyzers are scheduled for maintenance in the WMS program. Work is completed and logged in the logbook and in the WMS.

14 Collection Highlights

Collection Highlights were provided by the Municipality of Mississippi Mills.

14.1 Collection Highlights

- One (1) quarter of sewage collection system flushed and inspected via CCTV
- Regular sewer inspection program
- Several repairs main lines and laterals
- Preventative flushing
- Sewer lining on
- New sewer mains commissioned on Mill Street (Phase 1 and 2), 36 Main Street East, and 333 Country Street

14.2 Planning Initiatives

- Water and Wastewater Master Plan
- Union Street North Infrastructure Upgrade Design
- Princess Street Infrastructure Upgrade Design

Facility Assessment Report

Performance Assessment Report Standard ECA

From 1/1/2022 to 12/31/2022

5678 MISSISSIPPI MILLS WASTEWATER TRE	ATMENT FAC	ILITY 110000)873													
	1 / 2022	2/ 2022	3/ 2022	4/ 2022	5/ 2022	6/ 2022	7/ 2022	8/ 2022	9/ 2022	10/ 2022	11/ 2022	12/ 2022	<total></total>	<avg></avg>	<max></max>	<-Criteria->
Flows																
Raw Flow: Total - Raw Sewage m³/d	56,981.66	96,005.20	261,641.91	211,760.35	91,995.37	106,207.90	69,682.05	86,591.46	84,072.98	83,899.58	64,529.12	100,074.90	1,313,442.48			0.00
Raw Flow: Avg - Raw Sewage m³/d	1,838.12	3,428.76	8,440.06	7,058.68	2,967.59	3,540.26	2,247.81	2,793.27	2,802.43	2,706.44	2,150.97	3,228.22		3,598.47		
Raw Flow: Max - Raw Sewage m ³ /d	2,277.10	4,464.34	15,713.43	13,439.25	4,040.27	6,000.00	3,951.14	6,282.73	3,927.92	3,872.41	3,282.31	15,490.14			15,713.43	0.00
Raw Flow: Count - Raw Sewage m³/d	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	365.00			0.00
Eff. Flow: Total - Final Effluent m³/d	65,055.49	78,518.86	143,312.57	192,026.02	80,422.64	82,836.77	64,248.32	72,932.69	75,037.35	67,285.87	62,138.33	93,565.86	1,077,380.77			0.00
Eff. Flow: Avg - Final Effluent m³/d	2,168.52	2,804.25	4,622.99	6,400.87	2,594.28	2,761.23	2,072.53	2,352.67	2,501.25	2,170.51	2,071.28	3,018.25		2,959.84		4,700.00
Eff. Flow: Max - Final Effluent m ³ /d	2,895.37	3,879.97	10,825.35	10,207.63	3,582.00	4,842.87	3,574.60	3,932.42	3,912.32	2,433.91	2,626.29	15,519.65			15,519.65	0.00
Eff Flow: Count - Final Effluent m³/d	30.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	364.00			0.00
Biochemical Oxygen Demand: BOD5																
Raw: # of samples of BOD5 - Raw Sewage mg/L	4.00	4.00	8.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	55.00			0.00
Carbonaceous Biochemical Oxygen Demand: CBOI	 D															
Raw: # of samples of cBOD5 - Raw Sewage mg/L	4.00	4.00	8.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	55.00			0.00
Total Suspended Solids: TSS																
Raw: Avg TSS - Raw Sewage mg/L	432.50	798.25	59.50	107.00	156.50	136.40	226.25	144.00	320.25	180.00	222.60	251.25		252.88	798.25	0.00
Raw: # of samples of TSS - Raw Sewage mg/L	4.00	4.00	8.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	55.00			0.00
Total Phosphorus: TP																
Raw: Avg TP - Raw Sewage mg/L	6.82	13.48	1.75	3.05	4.07	3.93	5.60	3.65	5.87	5.58	5.60	6.54		5.49	13.48	0.00
Raw: # of samples of TP - Raw Sewage mg/L	4.00	4.00	8.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	55.00			0.00
— Nitrogen Series																
Raw: Avg TKN - Raw Sewage mg/L	44.78	63.80	13.26	22.15	28.80	30.18	34.73	27.76	52.93	45.38	46.90	45.85		38.04	63.80	0.00
Raw: # of samples of TKN - Raw Sewage mg/L	4.00	4.00	8.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	55.00			0.00
Disinfection	Q						_			I			I	· · · · · · · · · · · · · · · · · · ·		
Eff: GMD E. Coli - Final Effluent cfu/100mL	1.00	1.86	6.53	2.76	1.78	1.00	1.00	1.00	1.50	1.57	1.00	1.68				200.00
Eff: # of samples of E. Coli - Final Effluent cfu/100mL	4.00	4.00	12.00	8.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	63.00	┼───┤├		0.00

Page 1 of 1

Septage Sample Data

Ontario Clean Water Agency Time Series Info Report

From: 01/01/2022 to 31/12/2022

Facility Org Number:	
Facility Works Number:	
Facility Name:	
Facility Owner:	
Facility Classification:	
Receiver:	
Service Population:	
Total Design Capacity:	

110000873 MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY Municipality: Municipality of Mississippi Mills Class 3 Wastewater Treatment Mississippi River

5678

14100.0 m3/day

01/2022 02/2022 03/2022 04/2022 05/2022 06/2022 07/2022 08/2022 09/2022 10/2022 11/2022 12/2022 Total Avg Max Min Septage / Biochemical Oxygen Demand: BOD5 - mg/L Count Lab 3 0 3 0 0 0 0 0 1 0 0 0 Max Lab 1410 2620 1330 2620 Mean Lab 1231.333 956.667 1410 1139.143 Min Lab 507 430 1410 430 Septage / Total Kjeldahl Nitrogen: TKN - mg/L Count Lab 3 0 3 0 0 0 0 0 1 0 0 0 7 Max Lab 776 942 60.6 942 Mean Lab 420 411.767 60.6 365.129 Min Lab 81 76.3 60.6 60.6 Septage / Total Phosphorus: TP - mg/L Count Lab 3 3 0 0 0 0 0 0 1 0 0 0 7 Max Lab 491 622 8.7 622 Mean Lab 194.733 257.567 8.7 195.086 Min Lab 34.1 32.7 8.7 8.7 Septage / Total Solids: TS - mg/L 3 3 Count Lab 0 0 0 0 0 0 1 0 0 0 7 Max Lab 196000 20700 7150 196000 Mean Lab 73816.67 8803.333 7150 36430 Min Lab 1950 1360 7150 1360 Septage / Total Suspended Solids: TSS - mg/L Count Lab 3 0 3 0 0 0 0 0 1 0 0 0 Max Lab 117000 17600 680 117000 Mean Lab 45726.67 7423.333 680 22875.71 Min Lab 1180 370 680 370 Septage / pH -Count Lab 3 3 0 0 0 0 0 1 0 0 0 0 Max Lab 7.22 6.63 6.93 7.22 Mean Lab 6.14 6.933 6.93 6.593 Min Lab 6.53 5.33 6.93 5.33

Biosolids Quality

Ontario Clean Water Agency Time Series Info Report

From: 01/01/2022 to 31/12/2022

Facility Org Number:	5678
Facility Works Number:	110000873
Facility Name:	MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY
Facility Owner:	Municipality: Municipality of Mississippi Mills
Facility Classification:	Class 3 Wastewater Treatment
Receiver:	Mississippi River
Service Population:	

14100.0 m3/day **Total Design Capacity:** 09/2022 10/2022 11/2022 12/2022 Total Max Min 01/2022 02/2022 03/2022 04/2022 05/2022 06/2022 07/2022 08/2022 Avg CAKE / Aluminum: Al Dry Wt - mg/kg Count Lab Max Lab Mean Lab 107333.3 Min Lab CAKE / Arsenic: As Dry Wt - mg/kg Count Lab Max Lab < < ~ ~ ~ Mean Lab 1.94 < < < 1.25 < -< Min Lab 0.5 ~ ~ ~ 0.5 < CAKE / Cadmium: Cd Dry Wt - mg/kg Count Lab Max Lab 0.9 0.5 0.6 0.7 0.6 0.6 0.7 0.8 0.5 1.1 0.7 0.7 < 1.1 Mean Lab 0.85 0.6 0.75 0.5 0.55 0.6 0.55 0.55 0.65 0.6 0.7 0.5 0.62 Min Lab 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.5 ~ CAKE / Chromium: Cr Dry Wt - mg/kg Count Lab Max Lab < ~ Mean Lab 15.5 7.5 15.667 17.5 14.44 16.5 ~ Min Lab CAKE / Cobalt: Co Dry Wt - mg/kg Count Lab Max Lab < Mean Lab 2.5 1.5 1.5 1.5 1.333 1.5 1.72 < Min Lab CAKE / Copper: Cu Dry Wt - mg/kg Count Lab Max Lab 425.5 Mean Lab 441.5 447.5 395.5 377.5 449.333 423.48 Min Lab CAKE / E. Coli: EC Dry Wt - cfu/g Count Lab Max Lab > Mean Lab 53402.5 34447.5 102399.5 26204.5 40707.33 99603.6 Min Lab CAKE / Lead: Pb Dry Wt - mg/kg Count Lab Max Lab < Mean Lab 8.5 7.5 6.5 6.5 7.5 8.5 7.5 9.667 8.5 7.64 Min Lab CAKE / Mercury: Hg Dry Wt - mg/kg Count Lab 0.34 0.32 0.37 0.41 0.42 0.37 0.37 0.49 0.34 0.39 0.41 0.46 Max Lab 0.49

Mean Lab	0.33	26	0.3	0.35	0.38	0.38	Т	0.355	0.37	1 1	0.415	0.3	4	0.365	0.373	0.355		11	0.36	-		
Min Lab	0.33		0.3	0.35	0.35	0.36	+	0.355	0.37		0.415	0.3		0.365	0.373	0.355			0.36	-		0.25
CAKE / Molybdenum: Mo Dry Wt - mg/kg	0.3	3	0.20	0.55	0.35	0.34	-	0.34	0.37		0.34	0.3	94	0.34	0.32	0.25				-		0.23
Count Lab	2		2	2	2	2	-	2	2	-	2	2		2	3	2	25	:		_		
Max Lab	3		3	3	2	3	+	3	2	+ +	2	3		< 3	3	3	23	,		-	3	
Mean Lab	3		3	3	2	3	+	3	2	+ +	2	3		< 2	3	3		-	2.68	`	5	
Min Lab	3		3	3	2	3	+	3	2	+ +	2	3		< 1	3	3		<u> </u>	2.00		<	1
CAKE / Nickel: Ni Dry Wt - mg/kg	3		3	3	2	3	-	3			2	3		< 1	3	3				-	<	
Count Lab	2		2	2	2	2	-	2	2		2	2		2	3	2	25			-		
Max Lab	12		11	11	11	10	+-	11	10	+ +	10	10		< 11	11	12	23	,			12	
Mean Lab	12		11	11	10.5	10	+-	10.5	9	+ +	10	10		< 6	11	11.5		1	10.16	<	12	
Min Lab	10		11	11	10.5	10	_	10.5	9	-	10	10		< 1	11	11.5			10.10	_	<	1
CAKE / Nitrate: NO3 Dry Wt - mg/kg	10	,			10	10	-	10	0		10	10	, ,	< 1			_			_	<	1
Count Lab	2		2	2	2	2	-	2	2		2	2		2	3	2	25			-		
Max Lab	308		501	821	415	632	+-	223	296	+ +	576	85		855	1160	1100	23	,			1160	
Mean Lab	192		311.5	497.5	308.5	383	+-	161.5	262	+ +	466	846		446.75	995.667	899.5			501.5		1100	
Min Lab	77		122	174	202	134	+-	101.5	202	+ +	356	84		38.5	787	699			301.5			38.5
CAKE / Nitrite: NO2 Dry Wt - mg/kg			122	174	202	134	-	100	220		300	04	2	36.5	767	099				-		30.0
Count Lab	2		2	2	2	2		2	2		2	2		2	3	2	25					
Max Lab	27		47	2 20	135	< 10	-	10	18		10 <	< 10		< 10	< 44	< 18	25	Ή		/	135	
Mean Lab	< 18.		27	19	78	< 10	<	10	< 14	~	10 4	< 10		< 5.5	< 22.333	< 14	-		19.96	`	130	
Min Lab	< 10.		7	19	21	< 10		10	< 10	<	10 4	< 10		< 1	< 10	< 10			19.90	_		1
CAKE / Phosphorus: P Dry Wt - mg/kg	< 10	,	'	10	21	< 10	<pre></pre>	10	< 10	<	10 4		, ,	< 1	< 10	< 10				_	<	
Count Lab	2		2	2	2	2	-	2	2		2	2		2	3	2	25			-		
Max Lab	1100		29600	28900	25200	30800	+-	27800	35600	+ +	23800	292		29200	< 29200	49300	23	,		-	49300	
Mean Lab	942		24200	28150	14125	29950	+	26400	21065	+ +	23550	263	-	27850	< 17036.67	37200		1	23501.6	`	43300	
Min Lab	785		18800	27400	3050	29950	+	25000	6530		23550	203	-	26500	< 1036.67	25100		<	23501.6	-		10
CAKE / Potassium: K Dry Wt - mg/kg	765	50	10000	27400	3050	29100	-	25000	6530		23300	234	00	26500	< 10	25100				_	<	10
Count Lab	2		2	2	2	2	-	2	2	-	2	2		2	3	2	25	:		_		
Max Lab	143		1600	1760	1580	1580	_	1510	1150	-	1180	118		< 1150	1120	1150	23	,			1760	
Max Lab Mean Lab	143		1585	1760	1560	1560	_	1460	1100	-	1180	114		< 590	1080	1150			1269.6	<	1760	
Min Lab	1127	-	1585	1740	1470	1545	_	1400	1050	-	1180	110	-	< 30	1000	1070			1209.0	_	<	30
CAKE / Selenium: Se Dry Wt - mg/kg	112	.0	1570	1720	1470	1510	-	1410	1050		1100	110		< 30	1000	1070	_			_	<	30
	2		2	2	2	2	-	2	2	-	2	2		2	3	2	25	-		-		
Count Lab Max Lab	4		3	3	2	2	_	4	3	-	2 3	2		2	3	2 3	25)		_		
	3.5		3	3	2	3	_	4 3.5	2.5	-		3		3.5	3.333	-			2.94	_	4	
Mean Lab Min Lab	3.5					3	_	3.5		-	3	3		3.5		1.75			2.94	_		0.5
CAKE / Sodium: Na Dry Wt - mg/kg	3	_	3	3	2	3	_	3	2		3	3		3	3	0.5				_		0.5
· • • •	2		2	2	2	2	-	2	2	-	2	2		2	3	2	25	-		-		
Count Lab Max Lab	2		2 2000	2 1960	2 2010	2 1800	+	2 1920	2 1680	+	2 1860	2		2 < 1650	3 1740	2 1750	25	<u>' </u>		_	2010	
Max Lab Mean Lab	189		1975	1960	2010	1800	+	1920 1875	1680	+	1860 1765	170		< 1650 < 835	1740	1750		H	1701.2	<	2010	
Min Lab	158					1785	+			+				< 835 < 20	1700		-	<	1701.2	_		20
			1950	1880	1870	1770	+	1830	1670	+	1670	156	0.	< 20	10/0	1720		+		+	<	20
CAKE / Total Ammonia Nitrogen: NH3 + NH4+	as N Dry V				2	2	+	2	2		2		-		2	2	25			-		
Count Lab			2	2			+		2	+		2		2	3	2	25	2		-	1720	
Max Lab	< 210		125	< 133	1730 880	575 312.5	+	130 117	529	+	509 392	47		53 35.5	< 37 < 24	< 6	_	+	203.52	<	1730	
Mean Lab Min Lab	< 107 < 5		< 65	< 69 < 5	30	312.5	+	117	487 445	+	392 275	27		35.5	< 24 < 5	< 5.5	_	<	203.52	_		
CAKE / Total Kjeldahl Nitrogen: TKN Dry Wt - n	-	-	< 5	< 5	30	50	_	104	445		2/5	21	'	18	< 5	< 5				_	<	5
	<u> </u>		0		-	2	_	0	0	-	2			2	3		25			_		
Count Lab	2520		2 44600	2	2 47300		_	2 45200	2	-	∠ 45100	2		35800	-	2	25	`		_	64100	
Max Lab				44600		50000	+		64100	+		401			39500	40800		++	26400.4	+	64100	
Mean Lab	2100		37250	44200	32700	48100	+	42550	41450	+	40950	380	-	35800	22770	35800		++	36160.4	+		40
Min Lab	1680	00	29900	43800	18100	46200	-	39900	18800	+	36800	360	00	35800	10	30800		Н		-		10
CAKE / Total Solids: Percent - %			-		-	-			-			-										
Count Lab	2		2	2	2	2	+	2	2	+	2	2		2	3	2	25	2		+		
Max Lab	14.		17.7	16.3	17.1	24.8	+	16.7	18.3	+	16.9	25.		18.1	16.1	86		++	40.100	_	86	
Mean Lab	14.3		16.2	15.85	16	20.9		15.4	16.45	+	16.6	22		16.6	15.1	50.35	_	+	19.468	_		
Min Lab	14.	.1	14.7	15.4	14.9	17		14.1	14.6		16.3	18.	.5	15.1	14.4	14.7		+				14.1
CAKE / Volatile Solids: Percent - %																						

Count Lab	2	2	2	2	2	2	2	2	2	2	3	2	25			
Max Lab	58	60.1	58.1	61.1	61	59.8	58.9	56	68	55.3	55.9	58.1			68	
Mean Lab	55.85	59.35	57.1	61	58	59.15	56.75	55.55	60.9	54.15	55.267	57.2		57.432		
Min Lab	53.7	58.6	56.1	60.9	55	58.5	54.6	55.1	53.8	53	54.1	56.3				53
CAKE / Zinc: Zn Dry Wt - mg/kg																
Count Lab	2	2	2	2	2	2	2	2	2	2	3	2	25			
Max Lab	404	348	311	262	276	251	289	349	373	431	417	401			431	
Mean Lab	380.5	343.5	309.5	248.5	257	246.5	271.5	344.5	367	217	408	394		319.32		
Min Lab	357	339	308	235	238	242	254	340	361	3	403	387				3
CAKE / pH																
Count Lab	2	2	2	2	2	2	2	2	2	2	3	2	25			
Max Lab	6.86	7.23	7.07	7.58	7.14	7.31	7.62	7.27	7.4	7.04	7.12	7.07			7.62	
Mean Lab	6.76	7.11	6.995	7.325	7.02	7.195	7.41	7.155	7.21	7.01	7.1	7.03		7.11		
Min Lab	6.66	6.99	6.92	7.07	6.9	7.08	7.2	7.04	7.02	6.98	7.07	6.99				6.66

Calibration Records

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B-3M9 Ph. 613 248-1999 Fax: 613 248-1997

The Town of Almonte

Waste Water Calibration / Verification of Instrumentation

Report January 24, 2022

Calibration Date: January 19, 2022

Calibration Due: January 19, 2023

Calibrations performed by Tim Stewart

Report prepared by Tim Stewart

CapitalControls Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B-3M9 Ph. 613 248-1999 Fax: 613 248-1997

Table of Contents

1	LIST OF VERIFIED DEVICES	- 2 -
2	EQUIPMENT USED	- 3 -
3	PROCEDURES USED	- 3 -
3.1	Flowmeter Verification	- 3 -
4	INSTRUMENT VERIFICATION	- 5 -
4.1	FIT- 310 Septage Inlet Grinder	- 6 -
4.2	FIT- 350 Septage Tank	- 7 -
4.3	FIT- 611 R.A.S.	- 8 -
4.4	FIT- 612 W.A.S.	- 9 -
4.5	FIT- 631 R.A.S.	- 10 -
4.6	FIT- 621 R.A.S.	- 11 -
4.7	FIT- 622 W.A.S.	- 12 -
4.8	FIT- 632 W.A.S.	- 13 -
4.9	FIT- 750 Filtrate Tank	- 14 -
4.10	FIT- 1091 Service Water	- 15 -
4.11	FIT- 405 Attenuation	- 16 -
4.12	FIT- 946 Fournier Press #1 Polymer Flow	- 17 -
4.13	FIT- 940 Fournier Press #1 Sludge Flow	- 18 -
4.14	FIT- 956 Fournier Press # 2 Polymer Flow	- 19 -
4.15	5 FIT – 950 Fournier Press #2 Sludge Flow	- 20 -
4.16	FIT 470 Raw Sewage Vortex #1	- 21 -
4.17	' FIT- 480 Raw sewage Vortex #2	- 22 -

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B-3M9 Ph. 613 248-1999 Fax: 613 248-1997

4.18 FIT-01 White Tail Ridge Pumping Station	- 23 -
4.19 FIT 700 Sludge Flow	- 24 -
4.20 FIT-1180 Final Effluent	- 25 -
Appendix A- Equipment Calibration Certificates	- 26 -

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

1 List of Verified Devices

This letter is to confirm that annual verification on the following devices has been completed. Results of the all verifications are listed below.

ID	Process	Make/Model	Results
FIT-310	Septage Inlet Grinder	E&H/ Promag 53W	Passed
FIT-350	Septage Tank	E&H/ Promag 53P	Passed
FIT-611	R.A.S.	E&H/ Promag 10P	Passed
FIT-612	W.A.S.	E&H/ Promag 10P	Passed
FIT-631	R.A.S.	E&H/ Promag 10P	Passed
FIT-621	R.A.S.	E&H/ Promag 10P	Passed
FIT-622	W.A.S.	E&H/ Promag 10P	Passed
FIT-632	W.A.S.	E&H/ Promag 10P	Passed
FIT-750	Filtrate Tank	E&H/ Promag 10P	Passed
FIT-1091	Service Water	E&H/ Promag 10P	Passed
FIT-405	Attenuation	E&H/ Promag 53P	Passed
FIT-946	Fournier Press #1 Polymer	E&H/ Promag 50P	Passed
FIT-940	Fournier Press#1 Sludge	E&H/ Promag 50W	Passed
FIT-956	Fournier Press #2 Polymer	E&H/ Promag 50P	Passed
FIT-950	Fournier Press#2 Sludge	E&H/ Promag 50W	Passed
FIT-470	Raw Sewage Vortex #1	Siemens/Multiranger200	Passed
FIT-480	Raw Sewage Vortex #1	Siemens/Multiranger200	Passed
FIT-01	White Tail Ridge	E&H/ Promag 10	Passed
FIT-700	Sludge Flow	Rosemount/8712	Passed
FIT-1180	Final Effluent	Siemens/OCM III	Passed

Signed by Field Technician:

Tim Stewart

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

2 Equipment Used

The following equipment was used to perform the calibrations:

Fluke 725 Multifunction Process Calibrator used to measure current and pressure.

Level Simulator for the Flume Flow Meters

Endress and Hauser FieldCheck for Magnetic Flow Meters

3 Procedures Used

To verify the equipment standard verification procedures developped by the Township were used and standard industry practice.

3.1 Flowmeter Verification

Verification, Magnetic Flow Meter:

The verification of Endress & Hauser Flow measuring devices (the device under test) are checked for the following characteristic values:

1. Functionality and deviation in flow measurement.

2. Deviation in the current and frequency outputs in reference to the flow rate data determined by the measuring device.

<u>Measuring devices</u>: The verification system consists of the FlowCheck flow simulator, the Simubox and the appropriate connection cables.

FieldCheck: The FieldCheck flow simulator generates the flow simulation signals and processes the measured values sent back from the transmitter.

Simubox: The Simubox ensures that the FieldCheck simulation signal are correctly converted in the transmitter, by comparing the measurements returned from the transmitter to data stored within the Simubox for various parameters (Electromagnetic Field vs. Flow, Flow vs. Current, and various other parameters important in verifying the proper functionally of the device under test.

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Verification of Rosemount flow meters is carried out using the 8714D flow tube simulator.

Verification of Flume Flow Meters:

By use of a mechanical level simulating tool installed in the Parshall Flume an exact level can be simulated causing the transmitter to display flow based on the simulator adjusted level.

Shown below is a picture of a simple level simulator used to simulate flows/levels in a Parshall Flume.

By adjusting the reflector upward from the bottom ridge of the base, which will sit on the floor of the flume directly under the level sensor, the flow meter will transmit and display the flow proportional to the simulated level. In this case a 24inch Parshall flume with the simulator set to 240mm can be verified against the chart on the next page. The flow on the transmitter should be comparable to 156.4 l/s.

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

CapitalControls

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

FLOW CHART

			FLOW CH				
			E INSTRU		NC.		
		24"	Parshal]	L Flume			
Formula:	Q = KH^n,						
			in Liter	rs per S	econd.		
		= 0.031					
			in Mill:	imeters.			
		= 1.550					
H maximum		Millime					
H increme	nt: 5 Mil)	limeters	•				
		_					
mm	L/S	mm	L/s		L/S	mm	L/S
5.000	0.3875		113.4		325.4		605.9
10.00		200.0	117.9			580.0	614.1
15.00		205.0	122.5			585.0	622.3
20.00	3.323	210.0		400.0	345.2	590.0	630.6
25.00		215.0	131.9		351.9	595.0	638.9
30.00		220.0		410.0		600.0	647.2
35.00		225.0		415.0		605.0	655.6
40.00		230.0	146.4			610.0	664.0
45.00		235.0		425.0		615.0	672.5
50.00		240.0		430.0		620.0	681.0
55.00		245.0		435.0		625.0	689.5
60.00		250.0	166.6			630.0	698.1
65.00		255.0		445.0		635.0	706.7
70.00	23.16	260.0	177.1	450.0	414.4	640.0	715.3
75.00		265.0	182.4		421.5		724.0
80.00		270.0		460.0		650.0	732.7
85.00		275.0		465.0		655.0	741.5
90.00		280.0		470.0		660.0	750.2
95.00		285.0	204.1	475.0		665.0	759.1
100.0		290.0		480.0		670.0	767.9
105.0		295.0		485.0		675.0	776.8
110.0		300.0	221.0			680.0	785.8
115.0		305.0	226.8		480.3		794.8
120.0		310.0	232.6		487.9		803.8
125.0		315.0		505.0		695.0	812.8
130.0		320.0	244.3		503.1	700.0	821.9
135.0		325.0	250.2		510.8		831.0
140.0	67.83	330.0	256.2	520.0	518.5	710.0	840.2
145.0		335.0	262.3		526.2	715.0	849.3
150.0		340.0		530.0	534.0		858.6
155.0		345.0	274.5		541.8		867.8
160.0		350.0		540.0	549.7		877.1
165.0		355.0	286.9		557.6		886.5
170.0		360.0	293.2		565.6		895.8
175.0		365.0	299.5			745.0	905.2
180.0		370.0	305.9			750.0	914.7
185.0		375.0	312.4	565.0	589.6		
190.0	108.9	380.0	318.8	570.0	597.7		

4 Instrument Verification

See the following pages of reports for individual equipment.

CapitalControl S Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 **4.1 FIT- 310 Septage Inlet Grinder**

Flow Transmitter Instrument Calibration/Verification Report Date: January 18th, 2022 As Found Results

Client Details			Instrument Details	
Customer	Almonte O.C.W.A.		Manufacturer	Eand H
Contact	Austin Mitchell		Model	Promag 53 W DN 100
	613-257-9188		Serial Number	E309B116000
			Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart		Process	Septage Inlet Grinder
	Capital Controls		Tag ID	FIT-310
	613-248-1999		Output	4-20 mA
	Calibration	Equipment		
		uke Meter FieldCh	eck	
		25 50098		
		759025 990814		
	0			
	-			
iest Procedure				
ieldCheck	Amplifier	Current Output	Sensor Test	Potential Difference
			Sensor Test Rated for 5.00	Potential Difference Actual = 0.00
ieldCheck Zero Test		MP1 = -0.006 mA		
ïeldCheck Zero Test	05 mA MP1 = -0.61 %	MP1 = -0.006 mA MP2 = -0.021 mA	Rated for 5.00	Actual = 0.00

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

4.2 FIT- 350 Septage Tank

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 18th, 2022
As Found Results	•	

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 53 P DN 100
	613-257-9188	Serial Number	E60E6616000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Septage Tank
	Capital Controls	Tag ID	FIT-350
	613-248-1999	Output	4-20 mA

Calibrati	Calibration Equipment				
Make	Fluke Meter				
Model	725				
Serial #	8759025				

FieldCheck 50098801 990B1402000

Test Procedure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.009 mA	MP1 = -0.52 %	MP1 = -0.008 mA	Rated for 5.00	Actual = 0.00
	MP2 = -0.52 %	MP2 = -0.020 mA	Actual = 6.27	Lower Limit = 0.00
	MP3 = -0.00 %	MP3 = -0.001 mA	0.0014.25	Upper Limit = 300.00
	MP4 = +0.04 %	MP4 = +0.013 mA	Coil Current Stability Passed	

Comments

CapitalControl S Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 **4.3 FIT- 611 R.A.S.**

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 150
	613-257-9188	Serial Number	E6085316000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	RAS
	Capital Controls	Tag ID	FIT-611
	613-248-1999	Output	4-20 mA

Calibration Equipment				
Make	Fluke Meter			
Model	725			
Serial #	8759025			

FieldCheck 50098801 990B1402000

Test Procedure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.002 mA	MP1 = -1.28 %	MP1 = -0.002 mA	Rated for 83.30	Actual = 0.00
	MP2 = -0.03 %	MP2 = -0.003 mA	Actual = 66.48	Lower Limit = 0.00
	MP3 = -0.19 %	MP3 = +0.008 mA	2083.30	Upper Limit = 300.00
	MP4 = -0.15 %	MP4 = +0.021 mA	Coil Current Stability Passed	l i i i i i i i i i i i i i i i i i i i

Comments

CapitalControls Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.4 FIT- 612 W.A.S.

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 80
	613-257-9188	Serial Number	E6086D16000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	WAS
	Capital Controls	Tag ID	FIT-612
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Test	Proc	edure
rest	PIOC	euure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.004 mA	MP1 = -0.50 %	MP1 = -0.004 mA	Rated for 50.00	Actual = 0.00
	MP2 = -0.06 %	MP2 = -0.003 mA	Actual = 43.20	Lower Limit = 0.00
	MP3 = -0.02 %	MP3 = +0.001 mA	13.3450.00	Upper Limit = 300.00
	MP4 = -0.04 %	MP4 = +0.008 mA	Coil Current Stability Passed	I

Comments

The instrument under test has passed the annual calibration.

Make

Model

Fluke Meter

725

Serial # 8759025

CapitalControl S Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 **4.5 FIT- 631 R.A.S.**

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 150
	613-257-9188	Serial Number	E608FE16000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	RAS
	Capital Controls	Tag ID	FIT-631
	613-248-1999	Output	4-20 mA

Fluke Meter
725
8759025

FieldCheck 50098801 990B1402000

Test Procedure

FieldCheck

Amplifier	Current Output	Sensor Test	Potential Difference
MP1 = -1.30 %	MP1 = -0.004 mA	Rated for 83.30	Actual = 0.00
MP2 = -0.06 %	MP2 = -0.005 mA	Actual = 66.79	Lower Limit = 0.00
MP3 = -0.11 %	MP3 = -0.005 mA	20.0083.30	Upper Limit = 300.00
MP4 = -0.02 %	MP4 = -0.001 mA	Coil Current Stability Passed	
	MP1 = -1.30 % MP2 = -0.06 % MP3 = -0.11 %	MP1 = -1.30 % MP1 = -0.004 mA MP2 = -0.06 % MP2 = -0.005 mA MP3 = -0.11 % MP3 = -0.005 mA	MP1 = -1.30 % MP1 = -0.004 mA Rated for 83.30 MP2 = -0.06 % MP2 = -0.005 mA Actual = 66.79 MP3 = -0.11 % MP3 = -0.005 mA 20.0083.30

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 **4.6 FIT- 621 R.A.S.**

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 150
	613-257-9188	Serial Number	E6087E16000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	RAS
	Capital Controls	Tag ID	FIT-621
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Make

Model

Serial #

Fluke Meter

725

8759025

Test Procedure FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = +0.002 mA	MP1 = -1.26 %	MP1 = -0.005 mA	Rated for 83.30	Actual = 0.00
	MP2 = -0.17 %	MP2 = -0.005 mA	Actual = 66.56	Lower Limit = 0.00
	MP3 = -0.12 %	MP3 = -0.007 mA	20.0083.30	Upper Limit = 300.00
	MP4 = -0.03 %	MP4 = -0.006 mA	Coil Current Stability Passed	I

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.7 FIT- 622 W.A.S.

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 150
	613-257-9188	Serial Number	E6087E16000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	RAS
	Capital Controls	Tag ID	FIT-621
	613-248-1999	Output	4-20 mA

Calibration Equipment						
Make	Fluke Meter					
Model	725					
Serial #	8759025					

FieldCheck 50098801 990B1402000

Test Procedure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = +0.002 mA	MP1 = -1.26 %	MP1 = -0.005 mA	Rated for 83.30	Actual = 0.00
	MP2 = -0.17 %	MP2 = -0.005 mA	Actual = 66.56	Lower Limit = 0.00
	MP3 = -0.12 %	MP3 = -0.007 mA	20.0083.30	Upper Limit = 300.00
	MP4 = -0.03 %	MP4 = -0.006 mA	Coil Current Stability Passed	l

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.8 FIT- 632 W.A.S.

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 80
	613-257-9188	Serial Number	E6088416000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	WAS
	Capital Controls	Tag ID	FIT-632
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Te	st	t P	T	oc	e	d	ur	e
_			-					

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = +0.005 mA	MP1 = -0.35 %	MP1 = -0.001 mA	Rated for 50.00	Actual = 0.00
	MP2 = -0.83 %	MP2 = -0.001 mA	Actual = 43.31	Lower Limit = 0.00
	MP3 = -0.10 %	MP3 = -0.001 mA	13.3450.00	Upper Limit = 300.00
	MP4 = -0.06 %	MP4 = +0.002 mA	Coil Current Stability Passed	i

Comments

The instrument under test has passed the annual calibration.

Make

Model

Fluke Meter

725

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.9 FIT- 750 Filtrate Tank

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 19th, 2022
As Found Results		

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 80
	613-257-9188	Serial Number	E6086E16000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Filtrate Tank
	Capital Controls	Tag ID	FIT-750
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Test	Pro	cedu	re

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = +0.005 mA	MP1 = -0.68 %	MP1 = +0.003 mA	Rated for 50.00	Actual = 0.00
	MP2 = -0.23 %	MP2 = +0.003 mA	Actual = 43.78	Lower Limit = 0.00
	MP3 = -0.05 %	MP3 = +0.006 mA	13.3450.00	Upper Limit = 300.00
	MP4 = -0.04 %	MP4 = +0.010 mA	Coil Current Stability Passed	l i i i i i i i i i i i i i i i i i i i

Comments

The instrument under test has passed the annual calibration.

Make

Model

Fluke Meter

725

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 **4.10 FIT- 1091 Service Water**

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 18th, 2022
As Found Results		

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 P DN 150
	613-257-9188	Serial Number	E608F16000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Service Water
	Capital Controls	Tag ID	FIT-1091
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Test	Procee	dure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = +0.004 mA	MP1 = -1.16 %	MP1 = +0.005 mA	Rated for 83.30	Actual = 3.23
	MP2 = +0.14 %	MP2 = +0.005 mA	Actual = 66.50	Lower Limit = 0.00
	MP3 = -0.01 %	MP3 = +0.009 mA	20.0083.30	Upper Limit = 300.00
	MP4 = -0.04 %	MP4 = +0.009 mA	Coil Current Stability Passed	i i

Comments

The instrument under test has passed the annual calibration.

Make

Model

Fluke Meter

725

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

4.11 FIT- 405 Attenuation

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 18th, 2022
As Found Results	•	

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 53 P DN 200
	613-257-9188	Serial Number	E6088316000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Attenuation
	Capital Controls	Tag ID	FIT-350
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Test Procedure	

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.004 mA	MP1 = -0.53 %	MP1 = -0.004 mA	Rated for 13.30	Pipe Empty
	MP2 = -0.07%	MP2 = -0.015 mA	Actual = 18.45	Not Tested
	MP3 = -0.01 %	MP3 = +0.001 mA	0.0027.63	
	MP4 = +0.03 %	MP4 = +0.007 mA	Coil Current Stability Passed	

Comments

The instrument under test has passed the annual calibration.

Make

Model

Fluke Meter

725

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.12 FIT- 946 Fournier Press #1 Polymer Flow

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 18th, 2022
As Found Results	•	

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 50 P DN 25
	613-257-9188	Serial Number	DA084316000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Polymer Flow
	Capital Controls	Tag ID	FIT-946
	613-248-1999	Output	4-20 mA

50098801

990B1402000

Model

725

Serial # 8759025

Test Procedure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.004 mA	MP1 = -0.54 %	MP1 = -0.004 mA	Rated for 2.40	Actual = 3.27
	MP2 = -0.05 %	MP2 = -0.018 mA	Actual = 3.58	Lower Limit = 0.00
	MP3 = +0.01 %	MP3 = -0.000 mA	0.008.75	Upper Limit = 300.00
	MP4 = +0.02 %	MP4 = +0.006 mA	Coil Current Stability Passed	l i i i i i i i i i i i i i i i i i i i

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.13 FIT- 940 Fournier Press #1 Sludge Flow

Flow Transmitter Instrument Calibration/Verification Report Date: January 18th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 50 W DN 25
	613-257-9188	Serial Number	D2012116000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Sludge Flow
	Capital Controls	Tag ID	FIT-940
	613-248-1999	Output	4-20 mA

50098801

990B1402000

Test Procedure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.004 mA	MP1 = -0.57 %	MP1 = -0.004 mA	Rated for 4.20	Actual = 3.23
	MP2 = +0.01 %	MP2 = -0.017 mA	Actual = 5.34	Lower Limit = 0.00
	MP3 = -0.01 %	MP3 = -0.002 mA	0.0016.25	Upper Limit = 300.00
	MP4 = +0.03 %	MP4 = +0.003 mA	Coil Current Stability Passed	I

Comments

The instrument under test has passed the annual calibration.

Model

725

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.14 FIT- 956 Fournier Press # 2 Polymer Flow

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 18th, 2022
As Found Results	•	

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 50 W DN 25
	613-257-9188	Serial Number	DA084616000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Polymer Flow
	Capital Controls	Tag ID	FIT-956
	613-248-1999	Output	4-20 mA

50098801

990B1402000

Test Procedure FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.004 mA	MP1 = -0.54 %	MP1 = -0.004 mA	Rated for 2.40	Actual = 3.27
	MP2 = -0.02 %	MP2 = -0.018 mA	Actual = 3.65	Lower Limit = 0.00
	MP3 = +0.03 %	MP3 = +0.001 mA	0.008.755	Upper Limit = 300.00
	MP4 = +0.03 %	MP4 = +0.003 mA	Coil Current Stability Passe	d

Comments

The instrument under test has passed the annual calibration.

Model

725

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.15 FIT – 950 Fournier Press #2 Sludge Flow

Flow Transmitter	Instrument Calibration/Verification Report	Date: January 18th, 2022
As Found Results		

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 50 W DN 80
	613-257-9188	Serial Number	D4010116000
		Location	Almonte W.W.T.P.
Calibrations by:	Tim Stewart	Process	Sludge Flow
	Capital Controls	Tag ID	FIT-950
	613-248-1999	Output	4-20 mA

FieldCheck

50098801

990B1402000

Make

Model

Fluke Meter

725

Serial # 8759025

Test Procedure FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.004 mA	MP1 = -0.44 %	MP1 = -0.006 mA	Rated for 4.20	Actual 3.27
	MP2 = +0.01%	MP2 = -0.018 mA	Actual = 4.88	Lower Limit = 0.00
	MP3 = +0.03 %	MP3 = +0.005 mA	0.0012.65	Upper Limit 300.00
	MP4 = +0.08 %	MP4 = +0.004 mA	Coil Current Stability Passed	

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.16 FIT 470 Raw Sewage Vortex #1

Instrument Calibration Marification Report Flow Meter

As Found Results

Instrument Calibration/Verification Report
--

Date: January 19th 2022

Serial # 8759025

Level stand for simulating levels

Client Details Instrument Details Manufacturer Siemens Customer Almonte O.C.W.A. Austin Mitchell Model Multi ranger 200 Contact 613-257-9188 Order Code PBD/B5180380 Serial Number Calibrations by: Tim Stewart Location W.W.T.P. Capital Controls Output 4-20 mA 613-248-1999 **Raw Sewage Flow** Process FIT-470 Tag ID **Programming Paramaters** 12 inch Parshall Flume Calibration Equipment Exponential Device Make Fluke Multimeter 725 Ratiometric Model

Meters Range at zero head= 1.095 m Max head= .762 m Flow Exponent U0=1.522

4-20 mA= 0 - 39984 m3/day

Pass/Fail Criteria: 5% of Full Scale Test Procedure Errors are expressed in percentage of Full Scale Level Simulation Flow rate units are m3/day 10.25 inch Simulated Height 2.5 inch 14.5 inch Calculated Flow 849.6 7596 12958 Transmitter Value 842 7278 12634 Error 0.02% 0.80% 0.81% Expected mA 4.34 mA 7.04 mA 9.19 mA Actual mA 4.33 mA 6.98 mA 9.03 mA 0.06% 0.38% 1.00% Frror

Comments

The instrument under test is within error tolerance and has passed the annual calibration.

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.17 FIT- 480 Raw sewage Vortex #2

Flow Meter Instrument Calibration/Verification Report

Date: January 19th 2022

As Found Results

		Manufacturer	Siemens
Customer	Almonte O.C.W.A.		
Contact	Austin Mitchell	Model	Multi ranger 200
	613-257-9188	Order Code	
		Serial Number	PBD/B5180395
Calibrations by:	Tim Stewart	Location	W.W.T.P.
	Capital Controls	Output	4-20 mA
	613-248-1999	Process	Raw Sewage Flow
		Tag ID	FIT-480

Exponential Device Ratiometric Meters Range at zero head= 1.095 m Max head= .762 m Flow Exponent U0=1.522

2 inch Parshall Flume

Make Fluke Multimeter Model 725 Serial # 8759025

Level stand for simulating levels

4-20 mA= 0 - 39984 m3/day

Test Procedure				Pass/Fail Criteria: 5% of Full Scale Errors are expressed in percentage of Full Scale
Level Simulation		Flow	ate units are m3/d	
Simulated height	2.5 inch	10.25 inch	14.5 inch	
Calculated Flow	849.6	7596	12958	
Transmitter Value	874	7966	13457	
Error	0.06%	0.93%	1.25%	
Expected mA	4.34 mA	7.04 mA	9.19 mA	
Actual mA	4.35 mA	7.17 mA	9.36 mA	7
Error	0.06%	0.81%	1.06%	

Comments

The instrument under test is within error tolerance and has passed the annual calibration.

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.18 FIT-01 White Tail Ridge Pumping Station

Flow Transmitter Instrument Calibration/Verification Report Date: January 19th, 2022 As Found Results

Client Details		Instrument Details	
Customer	Almonte O.C.W.A.	Manufacturer	Eand H
Contact	Austin Mitchell	Model	Promag 10 DN 80
	613-257-9188	Serial Number	DC068219000
		Location	White Tail Ridge
Calibrations by:	Tim Stewart	Process	Sewage
	Capital Controls	Tag ID	FIT-01
	613-248-1999	Output	4-20 mA

Make Fluke Meter Model 725 Serial # 8759025

FieldCheck 50098801 990B1402000

Test Procedure

FieldCheck

Zero Test	Amplifier	Current Output	Sensor Test	Potential Difference
Current out = -0.003 mA	MP1 = -0.78 %	MP1 = -0.008 mA	Rated for 50.00	Actual = 0.00
	MP2 = -0.06 %	MP2 = -0.008 mA	Actual = 43.20	Lower Limit = 0.00
	MP3 = -0.07 %	MP3 = -0.003 mA	13.3350.00	Upper Limit = 300.00
	MP4 = +0.01 %	MP4 = +0.010 mA	Coil Current Stability Passed	l

Comments

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.19 FIT 700 Sludge Flow

Flow Meter

Instrument Calibration/Verification Report

Date: January 18th, 2022

As Found Results

lient Details		Instrument Detail	ls
Customer	Almonte O.C.W.A.	Manufacturer	Rosemount
ntact	Kurtis Winkenweeder	Model	8712
	613-257-9623	Serial Number	318926
		Location	W.W.T.P.
orations by:	Tim Stewart	Output	4-20 mA
	Capital Controls	Process	Sludge Flow
	613-248-1999	Tag ID	FIT-700

Programming Paramaters

Units Full Scale Cal Factor I/min 2617 l/min 0946405609424005#

Calibration Equipment Make Eludes

Make	Fluke	Rosemount
Model	725	8714D
Serial #	8759025	21040206

4-20 mA = 0-2617 l/min

Errors are expressed in percentage of Full Scale

Test Procedure	rocedure				5% of Full Scal	
Simulation using flow	/ tube simu	altor				
					Avg Error	
Simulated Value	0.00 ft/s	3.00 ft/s	10.00 ft/s	30.00 ft/s		
Instrument Display	0.00 ft/s	3.00 ft/s	10.00 ft/s	30.00 ft/s		
Display Error	0.00%	0.00%	0.00%	0.00%	0.00%	
Expected mA Output	4.00 mA	5.60 mA	9.33 mA	20.00 mA		
Actual mA Output	4.02 mA	5.62 mA	9.35 mA	20.01 mA		
mA Output Error	0.13%	0.13%	0.13%	0.06%	0.13%	

Coil resistance = 14.3 Ohms Coil resistance to ground = Mohms

Comments

The instrument under test is within error tolerance and has passed the annual calibration.

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 4.20 FIT-1180 Final Effluent

Flow Meter Instrument Calibration/Verification Report

Date: January 19th, 2022

As Found Results

Client Details		Instrument Details		
		Manufacturer	Siemens	
Customer	Almonte O.C.W.A.		Transmi	tter Sensor
Contact	Austin Mitchell	Model	Siemens	Siemens
	613-257-9188	Order Code	OCM III	XRS-5
		Serial Number	PBD	
Calibrations by:	Tim Stewart	Location	Mississi	opi Mills
	Capital Controls	Output	4-20 mA	1
	613-248-1999	Process	Plant Eff	luent
		Tag ID	FIT- 118	
Programming Pa		2 inch Parshall Flume	Calibrat	ion Equipment
Exponential Devi		2 inch Parshall Flume 2 valid echos per 100	Calibrat Make	ion Equipment Fluke Multimeter
Exponential Devi Ratiometric		2 inch Parshall Flume	Calibrat Make Model	ion Equipment Fluke Multimeter 725
Exponential Devi Ratiometric Meters	ce	2 inch Parshall Flume 2 valid echos per 100	Calibrat Make	ion Equipment Fluke Multimeter
Exponential Devi Ratiometric Meters Range at zero hea	ce ad= 97.5 cm	2 inch Parshall Flume 2 valid echos per 100	Calibrat Make Model Serial #	ion Equipment Fluke Multimeter 725 8759025
Exponential Devi Ratiometric Meters Range at zero hea Max head= 51.20	:e ad= 97.5 cm 619 cm	2 inch Parshall Flume 2 valid echos per 100	Calibrat Make Model Serial #	ion Equipment Fluke Multimeter 725
Exponential Devi Ratiometric Meters Range at zero hea	:e ad= 97.5 cm 619 cm	2 inch Parshall Flume 2 valid echos per 100	Calibrat Make Model Serial #	ion Equipment Fluke Multimeter 725 8759025

				Pass/Fail Criteria:	5% of Full Scale
Test Procedure				Errors are expressed	in percentage of Full So
Level Simulation		Flow	rate units are m3/d	ay	
				-	
Actual Height	11.8 cm	13.1 cm	51.2 cm		
Calculated Flow	2222	2607	21554		
Transmitter Value	2295	2669	21774		
Error	0.34%	0.29%	1.02%		
Expected mA	5.64 mA	5.94 mA	20 mA		
Actual mA	5.69 mA	5.98 mA	20.02 mA		
Error	0.31%	0.25%	0.13%	7	

Comments

The instrument under test is within error tolerance and has passed the annual calibration.

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997 Appendix A- Equipment Calibration Certificates

<u>///www.pylonelectronics.com</u>

CERTIFICATE OF CALIBRATION

Pylon Electronics Inc. 147 Colonnade Hoad Ottawa, ON K2E 7_9

Բազգե Սիսք է

 Description
 MULTI FUNCTION PROCESS

 Model Number
 725

 Instrument Id
 N/4

 Manufacturer
 FLUKF.

 Customer Name
 CAPITAL CONTROLS

 Work Order
 N0921415

 Serial Number
 8759025

 Cal Procedure
 667581

 Cal Date
 31 Mar 2021

 Recall Cycle
 52 Weeks

 Next Cal Date
 31 Mar 2022

 Purchase Order
 FO REQUIRED

Asset #

240-1210

354-933

Relative Hamidity 32.6 % RD

Calibration Environment: Temperature 23.5 °C.

Received Condition: Within Toleracce

Completed Condition: Within Tolerance

Remarks: TAB OF STAND IS BROKEN.

Standards Used to Establish Traccability

Instrument Type CALERATOR WITH SCOPE OPTION MULTIMETER <u>Model</u> 5522A-SC1100 34401A

<u>Cal Dire Date</u> 21 Dec 2021 22 Sep 2021

Fylor confides cal, to the long of calibration to a clove fished instrument mode or completelling field the specifications defined on the Lest Dan Sheet (TDS), onless affective initiated. The Emblicate received and completed confide as and the TDS specifications are based on the prevented by and/or specification (c) effects and the TDS index converses indicated. Any statement of completions is nate without the high measurement in outplinty into second and is need to be take uncertained by provide the first limits double or the fact cate specific

The above listed unsite ment has been culturated using standards that also meanlife for the lateraptical System of Units (SE) (insight a Nytonial Metrological Institution is according NRC or NIST). Fylorial quality system measure requirements of usioNEC 17026.2017. Up is suffering equations at the standard of the measurement of usion instandard of the measurement of usion.

This report downshold two parts with experimentary an intering solutions; the Certificate of Calderatori and the Jest Data Sheet (TDe). Copyright of this report is owned by the assume laboratory and an appendiculation that that in full, accept or to the prior writty in premission of the isoting to begin my. They data its bound and Front ins left) results for the source to loss a quotie of the owner. Consideration remarks identify if adjustments were performed.

Metrologist : 915		Quality Assurance:	301	Dute of Issue: 34 Mar 2020	
HALIFAX	MONTREAU	OTPAWA	TORONTO	EDMONTON	CALGARY

CapitalControls

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Page 1 of 4

	725 ar ID.: N/A duter: FLUKE ar: CAPITAL CONTROLS	Serial: Procedure: Proc. Rev.: Cal Date:	N0921415 8759025 667581 01-Apr-2014 31-Mar-2021			
TEST	225 PM	ne vis — Territo 151 —	And ASS HESU	07-Sep-2016 LIS	and the second	
REF.	TEST DESCRIPT ON	MIN	AS FOUND	FINAL	MAX	
P. 25	UPPER DISPLAY VOLTAGE MEASUREMENT T					
	APPLIED (V)	V	V		v	
	0	-0.002	300.0		0.002	
	15	14.995	15.001		15.005	
	30	29.992	30.004		30.000	
P.28	LOWER DISPLAY mV/TC MEASUREMENT TES	TS				
	APPLIED (V)	V	γ	v	V	
	0.00 m	-0.02 m	0.00 m		0.02 m	
	45.00 m	44.97 m	44.99 m		45.C0 n	
	80.00 m	89.96 m	m 63.88		90.04 n	
P, 27	LOWER DISPLAY VOLTAGE MEASUREMENT	TESTS	[
	APPLIED (V)	V.	V	Ŷ	V	
	0.000	-0.002	0.030		0.002	
	10.000	9,993	9.599		10.004	
	20.000	10.994	19.999		20.000	
P. 28	UPPER DISPLAY MA MEASUREMENT TESTS	UPPER DISPLAY MA MEASUREMENT TESTS				
	APPLIED (A)	A	Α	Α	А	
	4.000 m	3.997 m	3.999 m		4.003 n	
	12.000 m	11 995 гг	12.001 m		12.005 r	
	24.000 m	23.993 m	24.004 m		24.007 (

CapitalContrels

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Page ≥ of 1

icdet:	725 Seri	ai.	8759025		
TEST		MIN	AS FOUND	FINAL	MAX
30,0	TEST DESCRIPT ON	IMEN	ASPOUND	FINAL	MAX
P. 29	LOWER DISPLAY MA MEASUREMENT TESTS	· · ·			
	Al'PLIED (A)	A	Α	Α	A
	4.000 m	3.997 m	4.000 m		4.063 n
	12.000 m	11.28ú m	12.000 m		12.005 m
	24.000 m	23 993 m	24.002 m		24.007 r
P. 30	LOWER DISPLAY FREQUENCY MEASUREMENT T	ESTS			
	APPUED FRQ (Hz)	l-fy	H×	H2	112
	* V P P SQ 10 k	9.98 K	10.CC K		10.02 k
P, 31	LOWER DISPLAY FREQUENCY SOURCE TEST				
	TLOUIPUT (Hz)	Þ2	Hz	H∡	Hz
	10 k	9.975 k	10.000 K		10.025 k
P. 32	LOWER DISPLAY 4-W RESISTANCE MEASUREME	INT TESTS			
	APPLIED (Ω)	Ω	62	Ω	75
	15	14.90	14.99		15.1D
	250	349.00	349.97		350.10
	500	499.5	499.3		SDC.5
	1500	1498.5	1499.9		1500.5
	3200	0-99.0	3199.7		3201.0
P. 33	LOWER DISPLAY 3-WIRE RTD MEASUREMENT TR	ESTS			
	ΑΡΡΠΕΟ (Ω)	14	5à	Ω.	Ω
	350	349.80	349.95		350.20

CapitalControls

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Page 3 of 4

TE5				HESU		
HEF	TEST DESCRIPTION		MIN	AS FOUND	FINAL	MAX
P. 34	LOWER DISPLAY T/C MEASUREMENT TE	STS				1
	APPLIED ("C)	(V)	°C	<i>ა</i> ე	°C	°C
	c	0.000 n	-0.7	-0.2		0.7
۲.35	LOWER DISPLAY T/C SQURCE TEST					
	APPLIED ("C)		°C	30	°C	°C
	С		-0.7	-0.1		0.7
P. 36	LOWER DISPLAY MA SOURCE TESTS					
	OUTPUT (A)		А	A	А	A
	4 n		\$.9972 m	3.9995 m		4.0028 r
	12 m		11.9958 m	11. 998 6 n		12.03/4
	24 m		23.9932 m	23.9980 m		24.00681
P. 37	LOWER DISPLAY mV SOURCE TESTS					
	OUTPUT (V)		v	V	V	V
	0.0C п		-0.020 n	0.000 m		0.020 т
	45.00 m		44.970 m	44.997 m		45.030 (
	100.00 m		99.960 m	99.990 mi		100.04D
	LOWER DISPLAY YOLTAGE SOURCE TE	STS				
	Ουτρυτ (V)		V.	V	V .	V
	0.000		-0.002	0.000		0.002
	5.000		4.9970	5.0000		5.0030
	10.000		9.8960	10.0000		10.0040

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Page 4 of 4

odet:	725 Seria					
	TEST DESCRIPTION	MIN	RESU AS FOUND	ETS F NAL	МАХ	
P. 346	LOWER DISPLAY RESISTANCE SOURCE TESTS					
	CUTPUT (Ω)	53	Ω	12	Ω	
	15	14.8	15.0		15.1	
	360	359.9	360.D		350.*	
	500	499.5	500.0		520.5	
	1500	1499.5	1499.9		1500.5	
	3200	3199.C	3199.8		3201.0	
P. 39	PRESSURE MODULE INPUT					
	(WITH 700 SERIES PRESSURE MODULE)					
	TI D SPLAY SHOWS (PSI)	Pasa / Hall	n/a			

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

FieldCheck

Page 1 of 2 Seite 1 of 2

Production Number Fabrikationsnummer

Serial Number Seriennummer

Manufasturer Hersteller 240223

99081402000

Endress+Hauser Flowtec AG CH-4153 Reinach

Date Of Calibration Kalibriordatum Location

Drf Testing Instruction

Prüfanweisung Test Program

Prüfprogramm Test Engineer

P-üfer

Notes

Bemerkungen

V1.01.10

03/03/2021

DG-Greenwood

CalCenter_2

Jamia

...

Jaed Test-/Calibration Interface Verwendele Pr05/Kelforiscorbrillszele

Used Test-/Calibration Too/a Verwordiate Pr05/Kalibriarmitta

> Max, Devlation (Specification) Max, Abweichung (Specifikation) Current Source Stronguelle

Frequency Source Frequenzgeber

> The above mentioned calibration tools are baceable to national standards / NIST

Kellhley DMM2700 due 07/2021

Yokogawa CAL100 due 07/2021

+ 0,02% of signal / des Signals

0,04% of signal / des Signals

Die oben genannten Kalibrienmittel sind rückführfsar auf nationale Normale

0,01% of and value / des Endwertes (20mA)

Date, Signature: 03/03/2021,

STR

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

FieldCheck	Production Number / Fabrikationsnummer: Seriet Number / Serierunummer:			240223 99061402000	
Page 2 of 2 Seite 2 of 2					
Neseuring Data On Incoming Nessdaten bei der Eingangsp		Raixd Value Vorgabewert	Meas, Value Messwart	Limit Valua +⊱ Granzwart +/-	Pese / Fail Gui/Fehlerhall
Current Input	mA	0.000	0.000	0.005	Pass/Gut
Strom-Eingang	πA	20.000	20.003	0.010	Pass/Gut
Frequency input	Hz	0.0	0.0	0.0	Pass/Gut
Frequenz-Einstang	Hz	8000.0	7899.9	4.0	Pass/Gut

Measuring Data After Calibrat Mesadaten nach Kalibrierung		Rated Value Vorgabewert	Moss, Value Messwart	Limit Value #4 Granzwart #/-	
Current input Strom-Eingang	mA mA mA	0.000 10.000 20.000	0.002 10.003 20.001	0.002 0.004 0.005	
Frequency cout Frequenz-Elingeng	Hz Hz Hz	0.0 1000.0 8000.0	0.0 1000.0 8000.0	0.0 1.0 2.0	

Functional Safety Check Funktionaler Sicherheitscheck

This unit has passed the complete Functional Sefety Check. At voltages and currents produced by this unit are within toterances.

Dirstes Griffi hat den vollständigen funktionsten Sicherheitscheck bestanden Alle von diesem Gerät produzierten Spannungen und Ströme sind innerhalb der Toleranz.

Date, Signature: 03/03/2021,

Stre

CapitalControls

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

Simubox MID

Page 1 of 2 Seite 1 of 2

Production Number Fabricationsnommer

Sedal Number Sedennummer

Manufscturer Hersteller 8784351 JAOFE402000

Endress+Hauser Flowled AG

CH-4153 Reinach

Deta Of Calibration Kalibrierdatum Location

Ort Testing instruction

Profaniwelsung Test Program

Prüferogramm Leat Engineer

Prüfer

Nates

Bemerkunden

CalCenter_2 V1.01.10

03/03/2021

DG-Greenwood

Jamie

_

Used Test-Calibration Interface Vervendete Prüf-Kstibrierachnittatelle

Used Test-∕Calibration Tools Verwendste Prüf⊬Kalibriermittal

> Max, Deviation (Specification) Max, Abwe chung (Spazifikation) Current Sparce Stroniquelle

Frequency Source Frequenzgeden

The above mentioned calibration tools are traceable to national standards / NIST

0,01% of and value / des Endwartes (20mA)

Die oben genanntan Kalibriermittel sind rückführbar auf nationale Normale

Kellhley DMM2700 due 07/2021

Yokogawa CAL100 due 07/2021

+ 0,02% of signal / des Signals

0,01% of signal/ des Signals

Date, Signature: 03/03/2021,

A.S.

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

SimuBox MID

Production Number / Fabrikationsnummer, Serial Nember / Seriesmuthner:

8784051 LAGH = 402000

Page 2 of 2 Seite 2 of 2

Measuring Data On Incoming Inspection Measuring beli der Eingangsprüfung (Calculated Van Values / Berechnete Mitolware)	Ratec Value Vargabewert [µV]	Meas, Value Messwert [JV]	Umit Value <i>H-</i> Granzwart -/- [µV]	Paes / Fall Gut/Fehlemafi
Meas, Range 1	57.0	57.C	1.0	Pass/Gut
Meas, Range 2	334.0	332.7	3.0	Pass/Gut
Mean, Range 3	2064.0	2061.7	10.0	Pass/Gut
Moas, Range 4	11226.0	11821.2	20.0	Pess/Gut

Rates Value Vorgabewert IµV]	Mess, Value Messwer, JµV!	Limit Vakta +4 Grenzwert 44 (µV)
50.0	49.8	0.5
300.0	300.0	1.0
2000.0	2000.0	3.0
10000.0	9990.6	5.0
	Vargabewert µV] 50.0 300.0 2000.0	Vargabewert [µV] Messaver: [µV] 50.0 49.8 300.0 300.0 2000.0 2000.0

Date. Signature: 03/03/2021,

SS

03-1333 Michael St Ottawa, ON K1B 3M9 Ph. 613 248-1999 Fax: 613 248-1997

Switch Position	As Received	After Calibration	Ассптасу	Yearly Drift Specification
30	29 9999	29.9999	···05%	± 0.100%
01	10.0000	10.0000	10%	£ 0.100%
3	2.9998	2.9998	10%	+ 0.100%

Recommended Calibration Date: 11/22

Measuring and test equipment used in the manufacture and inspection of the above item is directly traceable to the National Institute of Standards and Technology. This traceability is intended to satisfy the intent of MIL-STD-45662, Notice 1.

einelt@e ferson com