
Mississippi Mills 2048 Our Community, Our Future

Mississippi Mills Water & Wastewater Infrastructure Master Plan Public Information Centre No. 2 January 18, 2024

J. L. Richards & Associates Ltd.

Public Information Centre No. 2 Agenda

Class Environmental Assessments & Master Plan Process

Problem/Opportunity Statement

Wastewater Treatment, Pumping, & Collection Systems

Mississippi Mills 2048 Our Community, Our Future

Project Background & Population Growth Projections

Potable Water Supply, Storage, & Distribution Systems

Next Steps & Consultation Process

Mississippi Mills Water & Wastewater Infrastructure Master Plan

Class EA Process

The Ontario Environmental Assessment (EA) Act, R.S.O., 1990 requires that projects corresponding to municipal infrastructure projects, including roads, water, and wastewater projects follow an approved planning process set out in the Municipal Class EA document prepared by the Municipal Engineers Association (MEA).

Master Plan Process

Master Plans are conducted under the framework of the MEA Class EA Process. They are a planning tool that identifies infrastructure and other requirements for the existing and future land use, through the application of environmental assessment principles. The current Master Plan is intended to satisfy Phases 1 and 2 of the Municipal Class EA process (i.e., Approach 1).

Master Plan Approach 1

This approach concludes at the end of Phases 1 and 2. With this approach, the Master Plan is being completed at a **broad level of assessment** and may require further detailed assessment at the project-specific level.

Mississippi Mills 2048 Our Community, Our Future

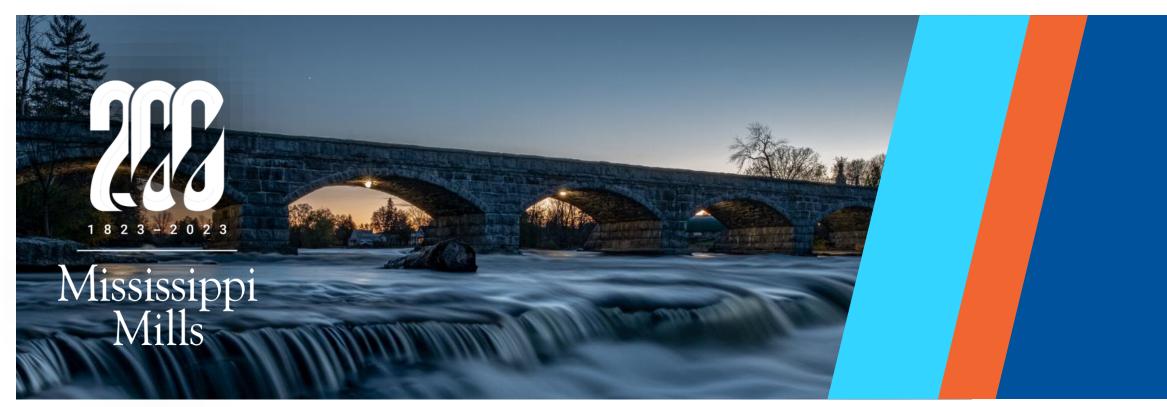
The Municipal Class Environmental Assessment Master Plan Process

Phase 1

Problem or Opportunity Phase 2 Alternative Solutions Phase 3 Alternative Design Concepts for Preferred Solution

Phase 4

Phase 5


Implementation

Environmental Study Report

Mississippi Mills Water and Wastewater Infrastructure **Master Plan** (Approach 1)

Mississippi Mills Water & Wastewater Infrastructure Master Plan Process

Project Timeline

April: Public Information Center No. 1

September: Finalize Population Projections

November: Phase 1 Report

3

5

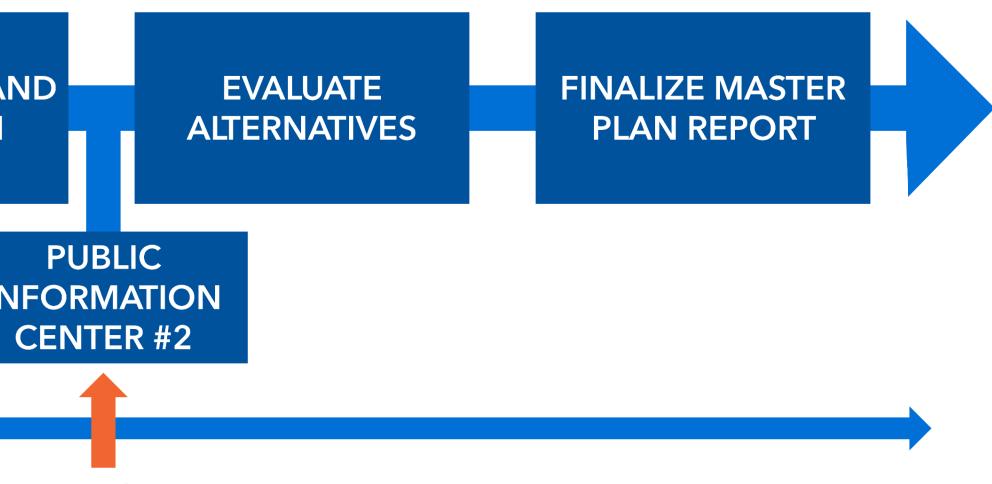
December: Assessment of Alternatives

January: Public Information Center No. 2

February: Finalize Phase 2 Report

March: 30 Day Review Period

Mississippi Mills 2048 Our Community, Our Future


PHASE 1: PROBLE	EM / OPPORTUNITY	P
DATA COLLECTION AND REVIEW	IDENTIFY PROBLEMS AND OPPORTUNITIES	IDENTIFY ALTERNATIVES AN EVLAUATION CRITERIA
	PUBLIC INFORMATION CENTER #1	IN

Phase 1 - Problem/Opportunity

- Collect and review background documents.
- Confirm future growth and planning projections.
- Establish a **design basis** and future water and wastewater demands.
- Review water supply capacity.
- Review wastewater treatment capacity with a focus on Gemmill's Bay Pumping Station.
- Update existing water and wastewater computer simulations
- Summarize findings and update stakeholders

PHASE 2: ALTERNATIVE SOLUTIONS

We are here! January 18, 2024

Phase 2 - Alternative Solutions

- Review alternative water and wastewater servicing options and selecting preferred alternatives.
- Prepare a draft Master Plan Report for review.
- Hold a **Public Information Center** to present the proposed alternatives and preferred solutions to the public.
- Re-evaluate servicing concepts based on comments received
- Filing the Master Plan with the Ontario Ministry of the Environment conservation, and Parks for 30-day review period.
- Issuing Notice of Completion and finalizing report

Mississippi Mills Water & Wastewater Infrastructure Master Plan Project Background: 2012 to 2022

2012: Water and Wastewater Infrastructure Master Plan

- For Almonte
- To the year **2031**

 Reaffirmed preferred servicing alternatives from 2012 Master Plan. Roadmap for future upgrades within the sewage collection, pumping and treatment systems and the water supply, distribution, and storage systems for short, mid, and longterm requirements.

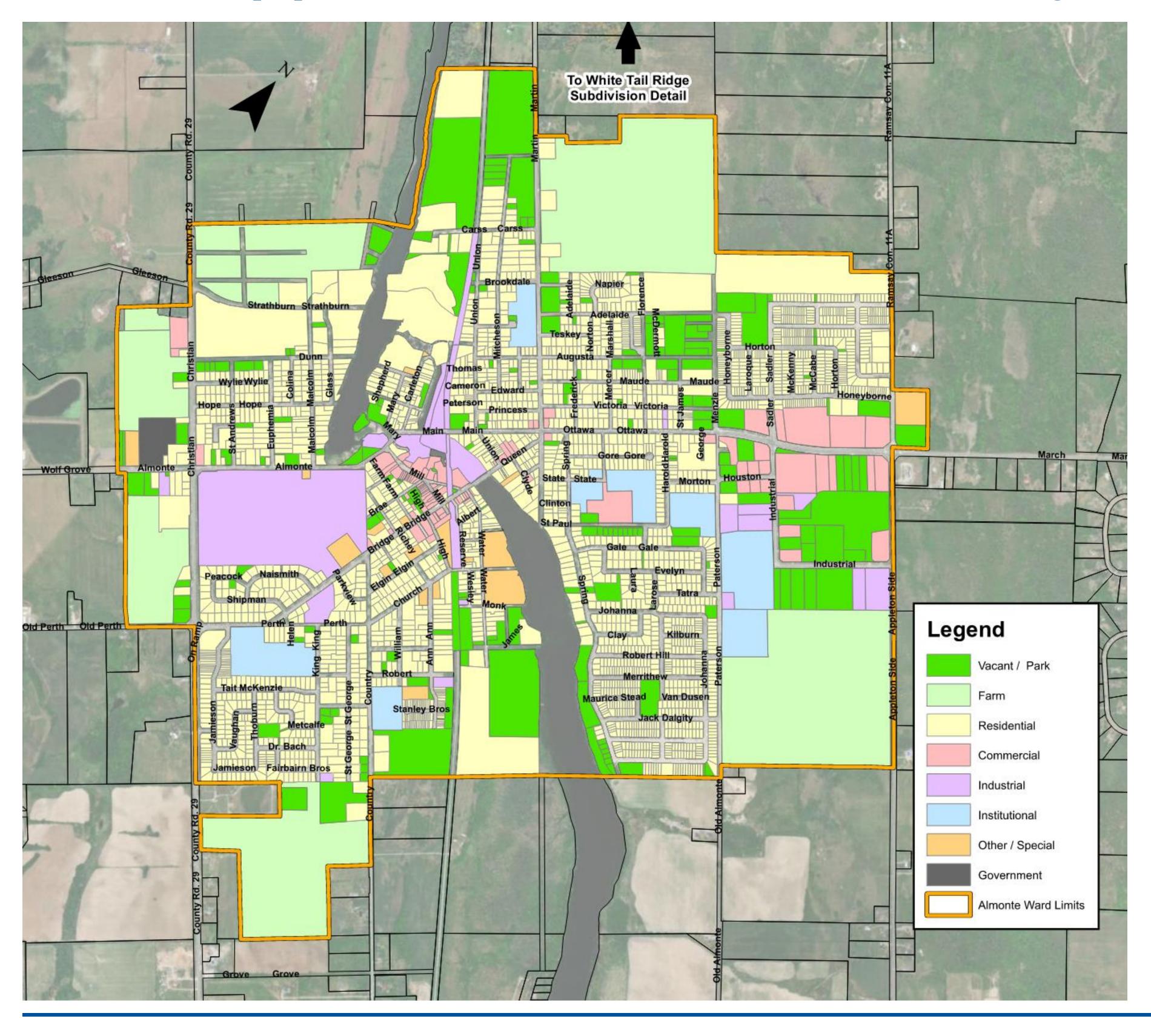
Mississippi Mills 2048 Our Community, Our Future

2018: Master Plan Update

2018-2022: Changes within the **Municipality**

- New population projections from Lanark County.
- Commissioning of the Victoria Street trunk sewer and watermain.
- Expansion of the Urban Boundary in an Official Plan Amendment.
- Construction of new water reservoir and **booster** pumping station.

HOW WE EEEEEE


2023: New Water and Wastewater Infrastructure Master Plan

- To develop water and wastewater servicing strategies that align with updated population projections.
- To meet existing regulations, existing and future service areas for Almonte over the next 25 years.
- To create tools for operational and capital improvements to the water and wastewater systems.

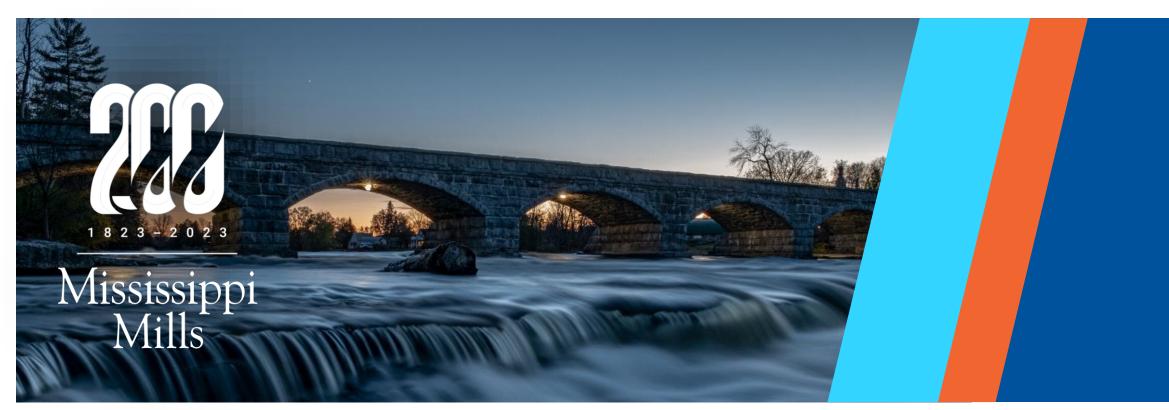
Mississippi Mills Future Growth Projections

Mississippi Mills 2048 Our Community, Our Future

Projectio

Exist (2021 Co Short-

(1-5 Years; 2


Mid-T (5-15 Years; 2

Long-7 (15-25 Years;

n Period	Population Estimate
ting Census)	6,098
-Term 2023-2028)	8,238
Ferm 2028-2038)	11,579
Term ; 2038-2048)	12,813

Potable Water Supply and Well Pumping Capacity

System Parameter (L/s)	Period	Max Day Demand (L/s)	Deficit (Existing Supply) (L/s)	Deficit from Full Yield (L/s)	Deficit from Full Yield at Only Wells 7 & 8 (L/s)
Existing Supply	Existing	53.5	None	None	None
70.1	Short-Term (2023-2028)	96.0	25.9	None	None
Full Yield 106.8	Mid-Term (2028-2038)	126.7	56.6	19.9	25.6
Full Yield at Wells 7 & 8 ⁽¹⁾ 101.1	Long-Term (2038-2048)	149.0	78.9	42.2	47.9

(1) This total is equal to the current operating limits of Wells 3, 5, and 6 (7.1 + 6.4 + 11.9 = 25.4)L/s) plus an upgraded operating limit of 75.7 L/s for Wells 7 and 8.

Problem/Opportunity

- The current operating capacity of Almonte's wells is less than what is required to support future growth.
- Upgrades to the existing pumps at Wells 7 and 8 will increase pumping capacity but not enough to support future growth.
- The Nepean Sandstone aquifer located on the west side of Almonte is expected to be a viable source to increase supply.

Mississippi Mills 2048 Our Community, Our Future

Alternative Solutions

Short Term (2023-2028)

demonstrated yield

Mid Term (2038-2048)

- Preferred: New well(s)

HOW WE

• Increase the pumping capacity of Wells 7 & 8 to their full

• Not preferred: New water treatment plant

Potable Water Supply and Well Pumping Capacity

Criteria	Option 1: Do Nothing	Option 2: New Well(s)	Option 3: New Water Treatment Plant	Next S
Overall Evaluation:	Not preferred	Preferred	Not preferred	
Natural Environment	No impact on water quality or quantity.	Local aquifer can support additional water supply from a new well(s).	Additional studies required to assess if surface water can support a new water treatment plant.	Short Term (0-5 years)
Evaluation:	No Impact	No Impact	Negative Impact	
Climate Change	Makes Almonte's potable water infrastructure vulnerable to impacts of climate change (ex. droughts).	Least infrastructure, results in less GHG emissions. Increases well redundancy. Aquifer is a reliable source but reliance on groundwater limits the system's resiliency.	construction. Vulnerable to	
Evaluation:	Negative Impact	No Impact	Negative Impact	Mid Term
Social, Cultural, & Heritage Environment	No impacts on social, cultural, and heritage resources, air quality, or the community. No construction or operation impacts.	Minimal impacts on social, cultural, and heritage resources, air quality, or the community. Minimal construction or operation impacts.	Highest impacts on social, cultural, and heritage resources, air quality, or the community. Highest construction or operation impacts.	(5-15 years
Evaluation:	No Impact	No Impact	Negative Impact	
Technical Feasibility	Will not be able to supply water for mid-term growth.	Will be able to supply water for mid-term growth. Easily integrated into existing distribution system.	Will be able to supply water for mid-term growth. Challenging to integrate into existing distribution system.	Long Term
Evaluation:	Negative Impact	Positive Impact	No Impact	(15-25
Financial	No capital costs. Inaction may lead to high financial impacts in the future.	Lower capital and operational costs.	Highest capital and operational costs.	years)
Evaluation:	No Impact	Positive Impact	Negative Impact	

Mississippi Mills 2048 Our Community, Our Future

HOW WE FLOW

teps

- Increase the pumping capacity of Wells 7 & 8 to their full demonstrated yield.
- Determine suitable well site for the construction of new well. Well location will be determined based on separation distances and the drilling of a test well.
- Cost: \$2.5M
- Drill and bring online a new well(s).
- Cost: \$6.5M

- Expand the capacity of the new well(s) to accommodate growth.
- Cost: \$500,000

Potable Water Storage: Towers and Tanks

	Equivalent			Vol	ume (m ³)		
Period	Population (1)	Existing Storage	Ά'	'B'	'C'	Required Storage	Deficit
Existing	6650	5330	1718	1334	763	3814	None
Short-Term (2023-2028)	10856	5330	2100	2073	1043	5216	None
Mid-Term (2028-2038)	13677	5330	2356	2736	1273	6365	1035
Long-Term (2038-2048)	16525	5330	3487	3218	1676	8381	3051

(1) Equivalent population determined using a demand of 35,000 m³/ha for light industrial lands, 28,000 m³/ha for commercial lands, and 350 L/d per capita. (2) Existing storage is inclusive of both the elevated tank and at-grade storage reservoir.

Problem/Opportunity

• Within the mid-term (2028 to 2038) the existing water tower and ground level water storage tank will not have enough storage capacity to meet the water system demands.

Mississippi Mills 2048 Our Community, Our Future

Alternative Solutions

Mid Term (2038-2048)

- Preferred: New Water Tower (elevated tank)
- Not preferred: Expansion of booster pumping station and reservoir
- Not carried forward: New booster pumping station and reservoir
- Not carried forward: Second water tower

HOW WE

Potable Water Storage: Towers and Tanks

Criteria	Option 1: Do Nothing Booster Pumps		Option 3: New Elevated Tank
Overall Evaluation:	Not preferred	Not preferred	Preferred
Natural Environment	No impact on water quality or quantity.	Higher impact due to new construction. Improves water distribution system.	Some impact due to new construction. Improves water distribution system.
Evaluation:	No Impact	Positive Impact	Positive Impact
Climate Change	Almonte remains vulnerable to impacts of climate change (ex. droughts).	Expanded infrastructure makes community more resilient.	New infrastructure makes community more resilient. Lower GHG emissions from less energy to maintain system pressure.
Evaluation:	Negative Impact	Positive Impact	Positive Impact
Social, Cultural, & Heritage EnvironmentNo impacts on social, cultural, and heritage resources, air quality, or the community. No construction or operation impacts.		Some impacts on social, cultural, and heritage resources, air quality, or the community. Some construction and high operation impacts.	Low impacts on social, cultural, and heritage resources, air quality, or the community. Some construction and low operation impacts.
Evaluation:	No Impact	Negative Impact	Negative Impact
TechnicalWill not be able to support mid- term growth.		Requires the most infrastructure and reliance on pumps to support mid-term growth and beyond.	Will be able to support mid-term and beyond. Ease of integrate into existing distribution system.
Evaluation:	Negative Impact	Negative Impact	Positive Impact
No capital costs. Inaction may		High capital but highest operational costs.	High capital but lowest operational costs.
Evaluation:	No Impact	Negative Impact	Negative Impact

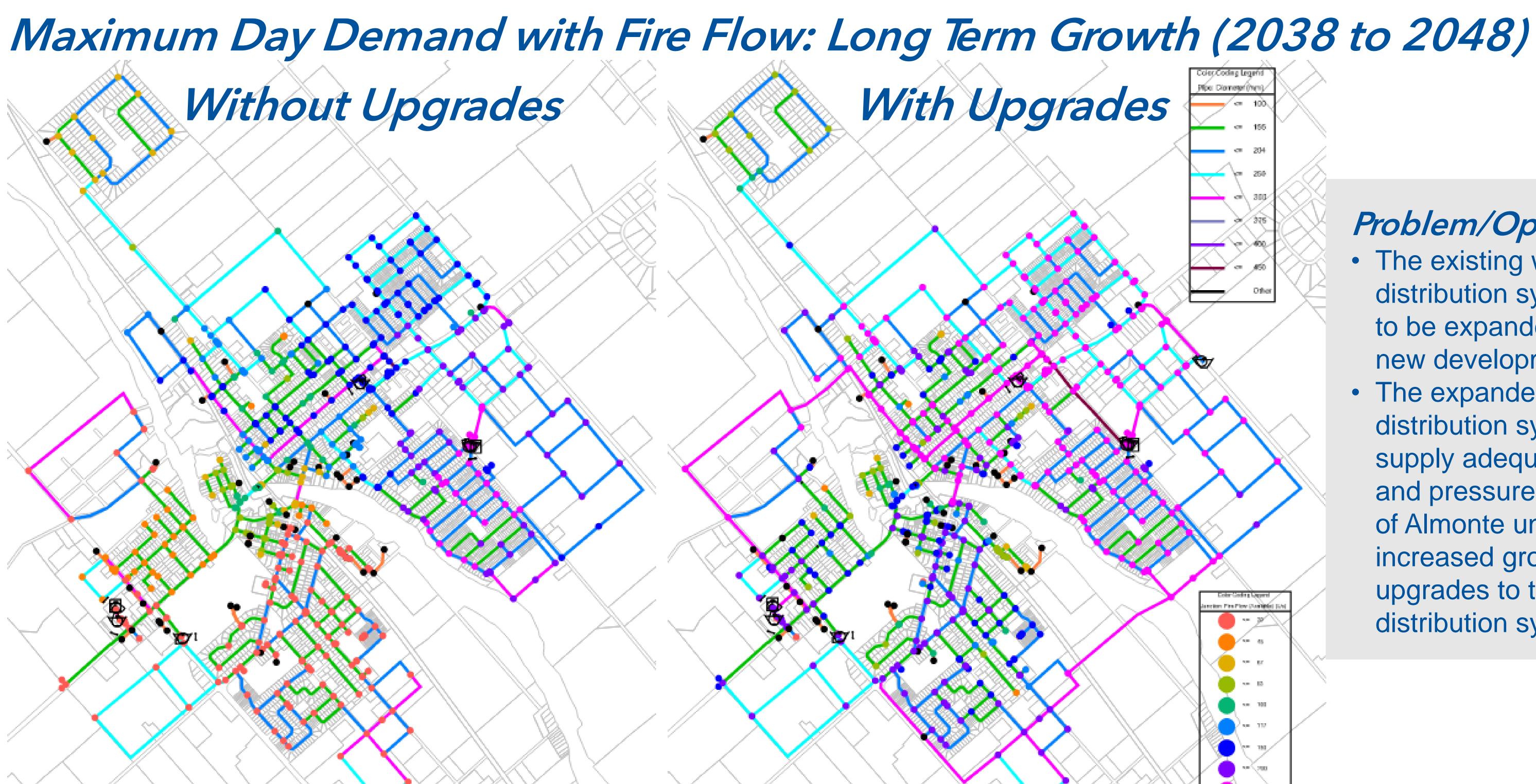
Mississippi Mills 2048 Our Community, Our Future

Next Steps

Mid Term (5-15 years)

Long Term (15-25 years)

HOWWE ELOW



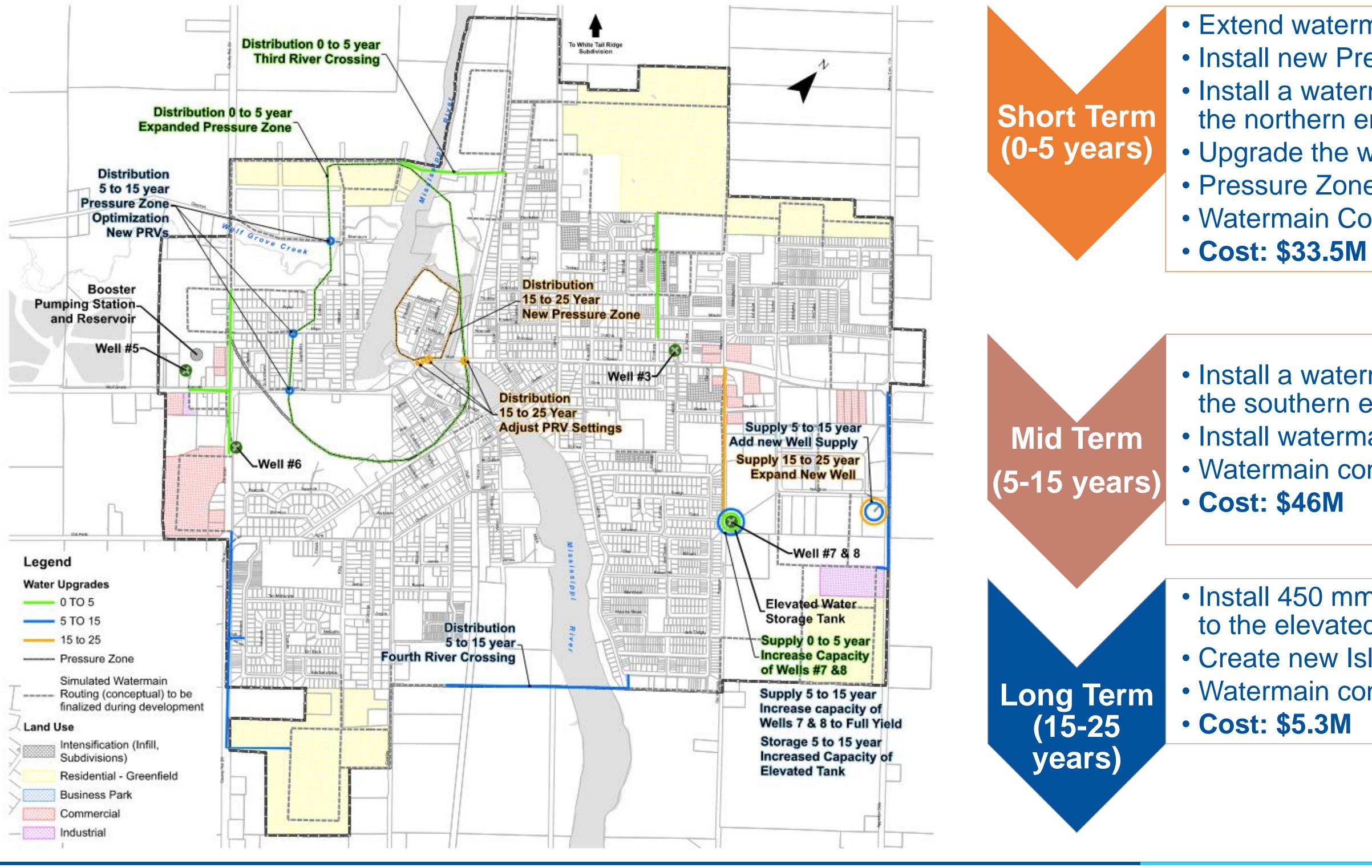
J.L.Richards

ENGINEERS · ARCHITECTS · PLANNER

Potable Water Distribution System

Mississippi Mills 2048 Our Community, Our Future

HOW WE ELOW


Problem/Opportunity

- The existing water distribution system needs to be expanded to supply new development areas.
- The expanded water distribution system cannot supply adequate fire flow and pressure to all areas of Almonte under increased growth without upgrades to the existing distribution system.

Mississippi Mills Water & Wastewater Infrastructure Master PlanPotable Water Infrastructure UpgradesNext Steps

Mississippi Mills 2048 Our Community, Our Future

HOW WE FLOW

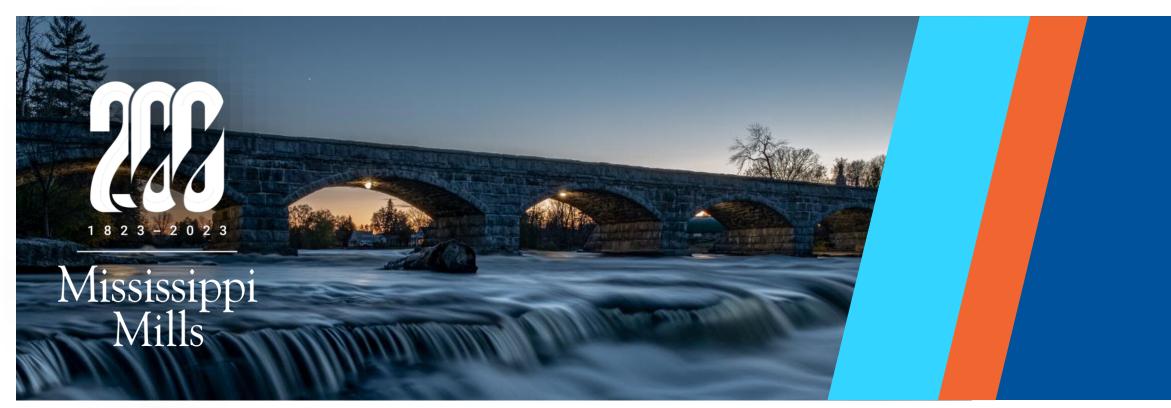
Extend watermain along northern County Road 29.
Install new Pressure Reducing Valves.
Install a watermain that crosses the Mississippi River at the northern end of Almonte.
Upgrade the watermain along Florence Street.
Pressure Zone Optimization
Watermain Condition Upgrades
Cost: \$33.5M

Install a watermain that crosses the Mississippi River at the southern end of Almonte.
Install watermain along southern Country Road 29.
Watermain condition upgrades
Cost: \$46M

Install 450 mm watermain from Ottawa to Patterson St to the elevated water tower.
Create new Island Pressure Zone
Watermain condition upgrades
Cost: \$5.3M

Proposed Implementation Plan: Potable Water Infrastructure

Project Type	Project	Short-Term (0-5 Years)
	Third River Crossing	\$6.5M
Water Distribution	County Road 29 Upgrade North	\$1.4M
valer Distribution	Upgrade watermain along Florence Street	\$680,000
	Optimize Pressure Zones and Install New PRVs	\$100,000
Mator Supply	Increase Capacity of Wells 7 & 8 (New Well)	\$2M
Water Supply	Well site selection and well testing	\$500,000
Water Distribution	Fourth River Crossing	
	Watermain extension along Country Road 29 South	
Water Supply	New Well(s) installation and expansion	
Water Storage	Increase Capacity of Elevated Tank	
Water Distribution	Paterson St WM Upgrade	
Water Distribution	Watermain Condition Upgrades	\$22.3M
	TOTAL	\$33.5M


Mississippi Mills 2048 Our Community, Our Future

Mi	d-T	erm	
(5-1	5 \	<i>l</i> ears	

Long-Term (15-25 Years)

\$300,000	\$300,000
\$500,000	—
\$17M	-
\$1.4M	
\$6.5M	\$500,000
\$13M	_
	\$1.4M
\$7.3M	\$3.1M
\$46M	\$5.3M

Wastewater Treatment System Capacity

		n from Existing (m3/d)	Contribution from Future Growth Areas (m3/d)		Total Flo	Total Flow (m3/d)		Total Peak Instantaneous
	Average Day Flow	Maximum Day Flow	Average Day Flow	Maximum Day Flow	Average Day Flow	Maximum Day Flow	Factor	Flow (m3/d)
sting	3780	19700	0	0	3780	19700	5.2	
t-Term -2028)	3780	19700	2037	6111	5817	25811	4.4	37584
-Term 3-2038)	3780	19700	3907	11721	7687	31421	4.1	41904
J-Term 3-2048)	3780	19700	5229	15687	9009	35387	3.9	45187
<u>_</u>								

	Contribution from Existing Areas (m3/d)		Contribution from Future Growth Areas (m3/d)		Total Flow (m3/d)		Peaking	Total Peak Instantaneous
	Average Day Flow	Maximum Day Flow	Average Day Flow	Maximum Day Flow	Average Day Flow	Maximum Day Flow	Factor	Flow (m3/d)
Existing	3780	19700	0	0	3780	19700	5.2	
Short-Term (2023-2028)	3780	19700	2037	6111	5817	25811	4.4	37584
Mid-Term (2028-2038)	3780	19700	3907	11721	7687	31421	4.1	41904
Long-Term (2038-2048)	3780	19700	5229	15687	9009	35387	3.9	45187

Total flow estimate under average day and maximum day considers the existing flow due to current population as well as the flow contributions from short-term, mid-term and long-term growth.

Problem/Opportunity

 Short term maximum daily flows exceed the peak flow capacity of the existing Wastewater Treatment Plant

Mississippi Mills 2048 Our Community, Our Future

Alternative Solutions

• **Preferred:** Expansion of the existing Wastewater Treatment Plant

Wastewater Treatment System Capacity

Criteria	Option 1: Do Nothing
Overall Evaluation:	Not preferred
Natural Environment	Negative impact on environment due to inability to treat high wastewater flows.
Evaluation:	No Impact
Climate Change	Makes Almonte's wastewater infrastructure vulnerable to impacts of climate change (ex. Floods resulting in bypasses).
Evaluation:	Negative Impact
Social, Cultural, & Heritage Environment	Bypasses impact the community, air quality, and operation.
Evaluation:	Negative Impact
Technical Feasibility	Will not be able to support short term growth.
Evaluation:	Negative Impact
Financial	No capital costs. Inaction may lead to high financial impacts in the future.
Evaluation:	No Impact

Mississippi Mills 2048 Our Community, Our Future

Option 2: New Wastewater Treatment Plant

Preferred

Will improve system's ability to treat wastewater flows and limit bypasses.

Positive Impact

Improved infrastructure makes community more resilient. Some GHG production from facility.

Positive Impact

Some impacts on social, cultural, and heritage resources, air quality, or the community. Some construction or operation impacts.

Negative Impact

Will be able to support short term growth.

Positive Impact

Higher capital and operational costs.

Negative Impact

Next Steps

Short Term (0-5 years)

Mid Term (5-15 years)

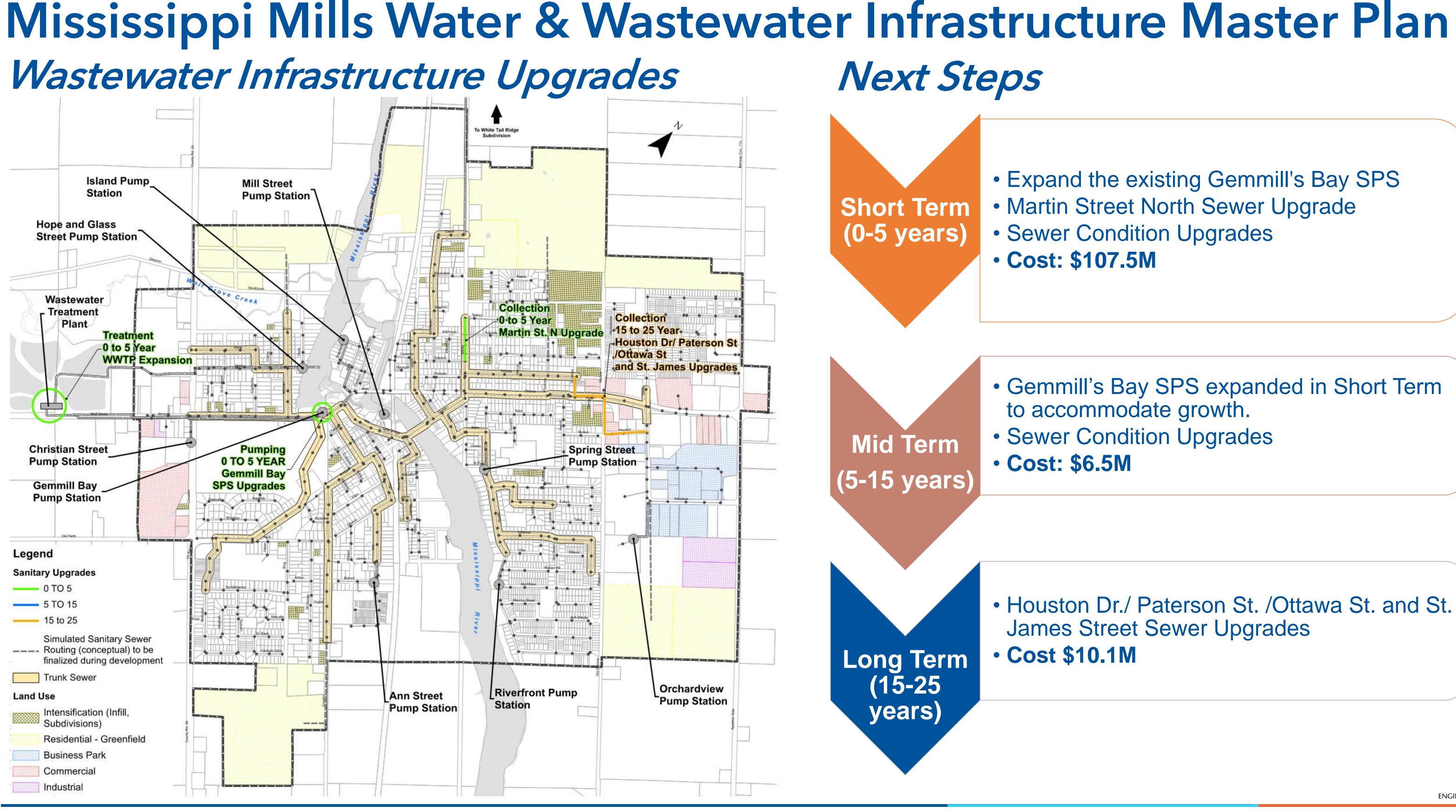
- Conduct a Schedule C Class EA to support the construction of a Wastewater Treatment Plant Expansion (WWTP)
- WWTP Expansion
- Cost: \$ 75M

Expanded in Short Term to accommodate growth.

• Expanded in Short Term to accommodate growth.

15

Wastewater Collection and Pumping


	'Opportuni			Criteria	Option 1: Do Nothing	Option 2: Gemmill's Bay SPS Expansion		
Pumping	Station result	eding the capac ing in an increas	e in bypass ev	vents.	Overall Evaluation:	Not preferred	Preferred	
 Collection future gro 		ds upgrading and	d expansion to	support	Natural Environment	Negative impact on environment due to inability to treat high wastewater Will improve system's ability to treat flows.		
Study	Design	Operational	Projected	Deficit (L/s)	Evaluation:	No Impact	Positive Impact	
Period	Capacity (L/s) ¹	Capacity (L/s) ²	Peak Flows (L/s) ³		Climate Change	Makes Almonte's wastewater system vulnerable to impacts of climate Improved infrastructure makes change (ex. increased storm intensity community more resilient. resulting in raw sewer overflows).		
Existing	325	225	398	173	ennare enange			
Short-Term	325	225	435	210				
(2023-2028)					Evaluation:	Negative Impact	Positive Impact	
Mid-Term (2028-2038)	325	225	485	260	Social, Cultural,	Overflows impact the community, air Some impacts on social, cultura		
Long-Term (2038-2048)	325	225	523	298	& Heritage Environment	quality, and operation. Increase in	heritage resources, air quality, or the community. Some construction or operation impacts.	
1. From 2010 D	esign Report (TR	RG), likely the sum of	two pumps rated	at 163 L/s.				
2.From 2018 OC	I I	$\mathbf{\nabla}$			Evaluation:	Negative Impact	Positive Impact	
	•	projections and hydr vage bypasses at the			Technical Feasibility	Will not be able to support short term Will be able to support short to growth.		
					Evaluation:	Negative Impact	Positive Impact	
	<i>ie Solution</i>		ronlaco Com	mill's Ray	Financial	No capital costs. Inaction may lead to high financial impacts in the future.		
 Build a new sewage pumping station to replace Gemmill's Bay 					Evaluation:	No Impact	Negative Impact	

Mississippi Mills 2048 Our Community, Our Future

HOW WE ELOW

ENGINEERS · ARCHITECTS · PLANNERS

Mississippi Mills 2048 Our Community, Our Future



• Expand the existing Gemmill's Bay SPS Martin Street North Sewer Upgrade Sewer Condition Upgrades

 Gemmill's Bay SPS expanded in Short Term to accommodate growth. Sewer Condition Upgrades

 Houston Dr./ Paterson St. /Ottawa St. and St. James Street Sewer Upgrades


Proposed Implementation Plan: Wastewater Infrastructure

Project Type	Project	Short-Term (0-5 Years)	Mid-Term (5-15 Years)	Long-Term (15-25 Years)
Wastewater Collection	Martin St. N Upgrade	\$500,000	-	-
vasiewaler Conection	Gemmill's Bay SPS Upgrade	\$15M	-	_
Wastewater Treatment	Wastewater Treatment Plant Expansion	\$75M		
Wastewater Collection	Houston Dr./ Paterson St./ Ottawa St. and St. James Upgrades		_	\$1.5M
Wastewater Collection	Sewer condition upgrades	\$17M	\$6.5M	\$8.6M
	TOTAL	\$107.5M	\$6.5M	\$10.1M

Mississippi Mills 2048 Our Community, Our Future

Mississippi Mills Water & Wastewater Infrastructure Master Plan Next Steps

January 2024: Compile comments from Public Information Centre No. 2

Mississippi Mills 2048 Our Community, Our Future

February 2024: Finalize Master Plan Recommendations in the Master Plan Report

March 2024: Issue Notice of Completion and place Master Plan on public record for 30 days.

Spring/Summer 2024: Municipality commences further studies selected from Master Plan recommendations.

Comments and Concerns?

Mississippi Mills 2048 Our Community, Our Future

In undertaking the consultation process with stakeholders, specific engagement was made with Indigenous communities and inherent rights and treaty holders to ensure an inclusive and holistic engagement process that promotes Indigenous sovereignty and wellbeing.

For More Information: To provide comments, preserve appeal rights, and stay updated, please visit:

aspx

HOWWE ELOW

Engagement

 Implement a Public/Agency Engagement Plan • Identify Stakeholders, mandatory contacts and other interested parties. Issue Notices by Mail and Email for • Commencement Public Information Centers Completion

Indigenous Consultation

mississippimills.ca/en/MM2048.

